Screening for Lung Cancer: Systematic Review to Update the U.S. Preventive Services Task Force Recommendation

Prepared for:
Agency for Healthcare Research and Quality
U.S. Department of Health and Human Services
540 Gaither Road
Rockville, MD 20850
www.ahrq.gov

Prepared by:
Pacific Northwest Evidence-based Practice Center
Oregon Health & Science University
Mail Code: BICC
3181 SW Sam Jackson Park Road
Portland, OR 97239
www.ohsu.edu/epc

Investigators:
Linda Humphrey, MD, MPH
Mark Deffebach, MD
Miranda Pappas, MA
Christina Baumann, MD, MPH
Katie Artis, MD, MPH
Jennifer Priest Mitchell, BA
Bernadette Zakher, MBBS
Rongwei Fu, PhD
Christopher Slatore, MD, MS

AHRQ Publication No. 13-05188-EF-1
July 2013
This report is based on research conducted by the Pacific Northwest Evidence-based Practice Center (EPC) under contract to the Agency for Healthcare Research and Quality (AHRQ), Rockville, MD (Contract No. 290-02-0024). The investigators involved have declared no conflicts of interest with objectively conducting this research. The findings and conclusions in this document are those of the authors, who are responsible for its content, and do not necessarily represent the views of AHRQ. No statement in this report should be construed as an official position of AHRQ or of the U.S. Department of Health and Human Services.

The information in this report is intended to help clinicians, employers, policymakers, and others make informed decisions about the provision of health care services. This report is intended as a reference and not as a substitute for clinical judgment.

The report may be used, in whole or in part, as the basis for the development of clinical practice guidelines and other quality enhancement tools, or as a basis for reimbursement and coverage policies. AHRQ or U.S. Department of Health and Human Services endorsement of such derivative products may not be stated or implied.

Suggested Citation

Acknowledgements

The authors acknowledge Andrew Hamilton, MLS, MS, for assistance with literature searches and Amanda Brunton, BS, for assistance with preparing this report. We also thank AHRQ Officers Jennifer Croswell, MD, MPH, Mary Barton, MD, MPP, Tracy Wolff, MD, MPH, and Tess Miller, DrPH, and USPSTF leads Sue Curry, PhD, Mike LeFevre, MD, MSPH, Virginia Moyer, MD, MPH, and Doug Owens, MD, MS, for their contributions to this report.
Structured Abstract

Background: Lung cancer is the leading cause of cancer-related death in the United States. However, persons with early lung cancer have lower lung cancer–related mortality than those with extensive disease, suggesting early detection and treatment of lung cancer might be beneficial. Low-dose computed tomography (LDCT) and chest x-ray (CXR) have been studied for early screening, with several new studies reporting results since the last review.

Purpose: To update the 2004 review of screening for lung cancer for the U.S. Preventive Services Task Force.

Data Sources: MEDLINE (2000 to 2012), Cochrane Central Register of Controlled Trials and Cochrane Database of Systematic Reviews (through fourth quarter 2012), Scopus, and reference lists.

Study Selection: English-language randomized, controlled trials or cohort studies that evaluated screening or treatment interventions for lung cancer and reported health outcomes.

Data Extraction: Details about participants, study design, analysis, followup, and results were abstracted; study quality was rated using established criteria, where applicable.

Data Synthesis (Results): Four trials reported the effectiveness of screening with LDCT for lung cancer in patients with personal smoking exposure: one large good-quality trial reported screening was associated with reduced lung cancer and all-cause mortality reductions of 20 percent (95% CI, 6.8 to 27.6) and 6.7 percent (95% CI, 1.2 to 13.6), respectively. Three small European trials (two fair- and one poor-quality) showed no benefit of screening. When the three good- or fair-quality trials were combined in random effects meta-analysis, the relative risk of lung cancer mortality was 0.81 (95% CI, 0.72 to 0.91). One trial evaluated CXR screening in over 150,000 participants from the general population and reported no benefit of screening in this group or in a subset with personal tobacco smoke exposure. The reported sensitivity of LDCT for detecting lung cancer ranged from 80 to 100 percent and specificity from 28 to 100 percent in six studies; each study varied in its reporting method. The harms associated with LDCT screening included radiation exposure ranging from 0.61 to 1.5 mSv per scan, some degree of overdiagnosis of lung cancer that varied by study, and a high rate of false-positive examinations, which were typically resolved with further imaging. Most patients with positive results who underwent an invasive procedure were diagnosed with lung cancer. Smoking cessation was not significantly impacted by screening, although individuals with positive or indeterminate screens showed a trend toward reduced smoking or sustained abstinence. Patients with positive or indeterminate scans had some evidence of short-term increases in anxiety and distress but not long-term in the five studies evaluating this; patients with negative scans had a reduction in distress. Finally, no trials comparing treatment of stage I non-small cell lung cancer (NSCLC) with no treatment have been conducted. However, survival associated with surgical resection was evaluated in 11 studies of mostly symptomatic and unselected patients that have shown 5-year survival rates in the 71 to 90 percent range for stage IA NSCLC and 42 to 75 percent for stage IB NSCLC and that surgical resection is the U.S. standard of care. Harms of treatment of stage I NSCLC were poorly reported and ranged among the studies that reported...
them.

Limitations: Three trials were underpowered and of too short of duration to reach conclusions on effectiveness of screening. Overdiagnosis is an important harm of screening but its magnitude is uncertain. No studies of LDCT have reported results in women or minority populations.

Conclusions: Good evidence shows LDCT can significantly reduce mortality from lung cancer. However, there are significant harms associated with screening that must be balanced with the benefits. More efforts to reduce false-positive examinations are of paramount importance and smoking cessation remains the most important approach to reducing lung cancer mortality.
Table of Contents

Chapter 1. Introduction
- Purpose of Review and Prior USPSTF Recommendation ... 1
- Condition Definitions .. 1
- Prevalence and Burden of Disease ... 2
- Risk Factors .. 2
- Natural History .. 3
- Rationale for Screening .. 4
- Interventions/Treatment ... 4
- Current Clinical Practice ... 4
- Recommendations of Other Groups .. 4

Chapter 2. Methods
- Key Questions and Analytic Framework .. 6
 - Key Questions ... 6
- Search Strategies ... 6
- Study Selection ... 7
- Data Abstraction and Quality Rating ... 7
- Data Synthesis ... 7
- External Review ... 8

Chapter 3. Results
- Description of Randomized, Controlled Trials .. 9
 - Randomized Trials of Low-Dose Computed Tomography Compared With Chest X-Ray 9
 - Randomized Trials of Low-Dose Computed Tomography Compared With No Low-Dose Computed Tomography ... 10
 - Randomized Trials of Chest X-Ray Compared With Usual Care .. 14
- Key Question 1. How Effective Is Screening for Lung Cancer in Reducing Mortality and Morbidity? .. 14
 - Summary ... 14
 - Evidence .. 15
- Key Question 2. What Are the Test Characteristics of Screening Tests for Lung Cancer? 18
 - Summary ... 18
 - Evidence .. 18
- Key Question 3. What Are the Harms Associated With Lung Cancer Screening and Are There Ways to Modify Harms? ... 20
 - Summary ... 20
 - Evidence .. 21
- Key Question 4. How Effective Is the Treatment of Surgical Resection of Early (Stage IA) Non-Small Cell Lung Cancer? .. 27
 - Summary ... 27
 - Evidence .. 27
- Key Question 5. What Are the Harms Associated With Surgical Resection of Early (Stage IA) Non-Small Cell Lung Cancer? ... 29
 - Summary ... 29
Evidence.. 29

Chapter 4. Discussion... 31
Summary of Review Findings ... 31
Limitations ... 36
Emerging Issues and Future Research .. 37
Conclusions ... 39

References... 40

Figures
Figure 1. Analytic Framework
Figure 2. Meta-Analysis of Lung Cancer Incidence
Figure 3. Meta-Analysis of Lung Cancer Mortality
Figure 4. Meta-Analysis of All-Cause Mortality

Tables
Table 1. Recommendations of Professional Organizations
Table 2. Summary of Included Randomized, Controlled Trials
Table 3. Incidence Rates of Lung Cancer Outcomes
Table 4. Computed Tomography Parameters
Table 5. Results of Screening Rounds in Randomized, Controlled Trials
Table 6. Results of Screening Rounds in Cohort Studies
Table 7. Smoking Rates
Table 8. Survival Benefit and Adverse Events After Treatment of Stage I Lung Cancer
Table 9. Summary of Evidence

Appendixes
Appendix A. Detailed Methods
Appendix A1. Search Strategies
Appendix A2. Inclusion and Exclusion Criteria
Appendix A3. U.S. Preventive Services Task Force Quality Rating Criteria for Randomized, Controlled Trials
Appendix A4. List of Reviewers
Appendix A5. Literature Flow Diagram
Appendix A6. List of Excluded Full-Text Papers

Appendix B. Evidence Tables and Quality Tables
Appendix B1. Evidence Table of Included Randomized, Controlled Trials
Appendix B2. Quality Rating Table of Includes Studies
Appendix B3. Evidence Table of Included Cohort Studies
CHAPTER 1. INTRODUCTION

Purpose of Review and Prior U.S. Preventive Services Task Force Recommendation

The purpose of this report is to update a previous evidence review commissioned by the U.S. Preventive Services Task Force (USPSTF) on screening for lung cancer. In 2004, based on the previous evidence review, the USPSTF found there was insufficient evidence to either recommend for or against routinely screening asymptomatic persons for lung cancer with either low-dose computed tomography (LDCT), chest x-ray (CXR), sputum cytology, or a combination of these tests (I statement).²

The previous evidence review assessed six randomized, controlled trials (RCTs) of poor- or fair-quality of CXR screening with or without sputum cytology examination conducted in the 1960s and 1970s among men at high risk for lung cancer because of exposure to tobacco smoking. No studies showed reduced lung cancer mortality among any of the screened participants.¹ However, participants in all studies received some level of screening, limiting conclusions about screening compared with no screening.

The previous evidence review also included five fair-quality case-control studies from Japan of high-risk men and low- or unknown-risk women.¹ All studies found lower odds of dying of lung cancer among those screened periodically with CXR, with odds ratios (ORs) ranging from 0.4 to 0.7. One poor-quality case-control study did not show benefit.³ Focusing specifically on the efficacy of lung cancer screening in women, the previous evidence review identified a suggestion of benefit from Japanese case-control studies of CXR screening, but found no RCTs evaluating CXR screening in women.

Screening for lung cancer with LDCT was evaluated in six cohort studies included in the previous evidence review. These studies screened both high- and low-risk individuals and found LDCT identified more early-stage lung cancer than CXR or than is typically identified in clinical practice. The previous evidence review identified no RCTs on the use of LDCT screening for lung cancer.

The current evidence review will be used by the USPSTF to update its 2004 recommendation on screening for lung cancer. This update focuses on evidence that has been published since the previous evidence review on the effectiveness of screening asymptomatic men and women for lung cancer, as well as the risks and harms associated with screening. The report will emphasize evidence applicable to typical practice in the United States.

Condition Definitions

Lung cancer is a proliferation of malignant cells arising in the airways or tissues of the lung. Ninety-five percent of lung malignancies are either non-small cell lung cancer (NSCLC) or small
cell carcinoma, with small cell carcinoma accounting for 16 percent of cases. The remaining 5 percent of primary pulmonary malignancies include rare entities such as carcinoid tumor. NSCLC is a heterogeneous designation with subsets including squamous cell carcinoma, adenocarcinoma, large cell carcinoma, and undifferentiated carcinoma. Individual tumors can show features of several of these subtypes. Adenocarcinoma is the most common subtype, encompassing 36 percent of all lung cancers, with squamous cell carcinoma making up 20 percent of cases in a large survey of U.S. lung cancer from 1998 to 2001. The World Health Organization has recently revised the histology classifications for lung cancer, including several new preinvasive lesions within the adenocarcinoma classification.

Lung cancer is staged according to the American Joint Committee by the TNM system. The TNM and stage designations have been recently revised and a new breakdown of early-stage primary cancers into T1a (<2 cm) or T1b (2 to 3 cm) has been added. Stage IA NSCLC is less than or equal to 3 cm in its greatest dimension, does not invade the visceral pleura or bronchus within 3 cm of the main carina, and has no evidence of lymph node or metastatic spread.

Prevalence and Burden of Disease

Lung cancer is the second most commonly occurring cancer in the United States among men and women and the leading cause of cancer-related death. The American Cancer Society (ACS) predicted there would be approximately 226,160 new cases and 160,340 lung cancer–related deaths in the United States in 2012. Notably, lung cancer is expected to account for almost 28 percent of all cancer-related deaths in 2012. Current estimates suggest that almost 7 percent of men and women born today will be diagnosed with lung cancer during their lifetime and almost 6 percent will die from it. Lung cancer and lung cancer–related deaths have been increasing in epidemic proportions throughout the world, with differences between countries largely explained by differences in smoking rates. Worldwide, it is estimated there were 1.6 million new cases and 1.4 million deaths from lung cancer in 2008. Rates of lung cancer vary by smoking status. In one very large population-based cohort study of approximately 50,000 people ages 40 to 70 years, lung cancer death rates among women and men smoking 20 or more cigarettes per day were 41 and 43 per 1,000 or 16 and 11 percent of all deaths, respectively. Among never smokers, lung cancer mortality was 1.0 and 1.3 per 1,000 for women and men, respectively. As a measure of the burden of lung cancer in the population, lung cancer is the leading cause of years of life lost to cancer in the United States, with an estimate of 15 years of life lost on average per person dying of lung cancer.

Risk Factors

The biggest single risk factor for lung cancer is smoking, causing approximately 85 percent of lung cancers in the United States. Worldwide, smoking accounts for 75 to 80 percent of cases in men and at least 50 percent in women. Smoking has been associated most strongly with squamous cell and small cell carcinoma and to a lesser degree with adenocarcinoma, including the bronchioloalveolar subtype.
Utilizing data from 2006 through 2007, the Tobacco Use Supplement Survey from the National Cancer Institute reported 37 percent of adults in the United States as current or former smokers. Although the prevalence of current smoking has declined slowly in recent years, in 2010 it was estimated that 19 percent of U.S. adults were current smokers and that 17 percent of adults will still be current smokers in 2020. Furthermore, it was estimated that in 2008, there were 7 million people in the United States ages 55 to 75 years with at least a 30 pack-year smoking history, the approximate target group for lung cancer screening in most trials published to date. In the United States, a high percentage of lung cancer occurs in former smokers because of the large group of former smokers in the population and because lung cancer risk does not decrease until many years after smoking stops. In recent years, the incidence of lung cancer in the United States has been slowly declining, but given these estimates of both current and former cigarette smoking, it is unlikely to decline significantly for many years, and lung cancer will remain a major public health problem in this country and an increasing problem worldwide.

The incidence of lung cancer also significantly increases with age. Other risk factors for lung cancer include family history, chronic obstructive pulmonary disease, pulmonary fibrosis, exposure to passive tobacco smoke, indoor cooking fumes, environmental radon, and occupational exposures such as asbestos, arsenic, chromium, and coal tar. Some studies suggest women are at higher risk for lung cancer than comparably exposed men. In addition to these risk factors, blacks are nearly twice as likely as their white counterparts to have a tobacco-related cancer, suggesting that race/ethnicity may also be a risk factor for lung cancer. There is also some evidence suggesting that the incidence of lung cancer is higher among people of disadvantaged socioeconomic status, although this may be due to unmeasured confounding from smoking.

If lung cancer among nonsmokers is considered alone, it would be the seventh leading cause of cancer-related death in the world, and as smoking rates decrease, will represent a larger fraction of lung cancer than is currently the case. Notably, there are major sex, clinicopathologic, and molecular differences in lung cancers arising in nonsmokers and smokers.

Natural History

The rate of progression of lung cancer varies by cell type as well as molecular biology, but generally has a poor prognosis and is the cause of death in more than 90 percent of affected individuals. The 5-year survival rate for all stages combined is approximately 16 percent. Stage at diagnosis is a strong predictor of lung cancer mortality. Unfortunately, 75 percent of patients with lung cancer present with symptoms due to advanced local or metastatic disease that is not amenable to cure.

For patients diagnosed with localized disease (defined as cancer limited to the lung without spread to other organs or lymph nodes), 5-year relative survival is 52 percent compared with 25 and 4 percent for regional (spread to regional lymph nodes) and distant (metastatic) disease, respectively. For the earliest-stage tumors, median 5-year survival is estimated at 77 percent. Currently, however, only 15 percent of lung cancers are diagnosed at an early stage. Accordingly, there is considerable interest in the early detection and treatment of lung cancer in
Rationale for Screening

Lung cancer has many attributes that make it appropriate to consider screening for, including high morbidity and mortality and a relatively high prevalence in high-risk populations. Lung cancer mortality and survival are related to the initial stage of diagnosis, suggesting that treating early may be beneficial; therefore, an effective screening program for the early detection and treatment of lung cancer could have a significant impact on its high mortality rate.

A good screening test for lung cancer should be sensitive, specific, acceptable to patients and providers, and relatively cost-effective. In this regard, LDCT has emerged from observational studies as a promising new technology for diagnosing early lung cancer. In the early 1990s, LDCT was introduced as a screening test with hope that improved sensitivity might improve lung cancer screening outcomes, and several observational studies and RCTs began to evaluate this modality. Thus, with data now being reported from several ongoing trials, it is appropriate to reexamine the literature to date on the outcomes of screening for lung cancer. Current screening efforts are directed toward the early detection of NSCLC, since small cell lung cancer is less common and often grows and spreads too quickly to be reliably detected by intermittent screening.

Interventions/Treatment

Small cell lung cancer and NSCLC are managed differently. While small cell lung cancer is treated as a systemic disease, except in rare instances, the current standard of care for the treatment of localized NSCLC is surgical resection, whereas advanced NSCLC is often treated with radiation and/or chemotherapy, in addition to surgical resection when possible. For patients with poor performance status, supportive care may be the only appropriate therapy. Detecting and treating early-stage NSCLC is the focus of most screening programs for lung cancer since early treatment can lead to cure of NSCLC.

Current Clinical Practice

Until recently, few patients in the United States were being screened for lung cancer and no professional organizations, including the USPSTF, the ACS, the American College of Chest Physicians (ACCP), and the American Academy of Family Physicians, recommended routine screening. However, since the early 2000s, LDCT for the detection of early lung cancer has been broadly available, and there is evidence that patients and clinicians are already engaging in lung cancer screening.

Recommendations of Other Groups

In May 2012, based primarily on results from the National Lung Screening Trial (NLST), several
organizations, including the ACCP, the American Society of Clinical Oncology, and the American Thoracic Society, as well as the National Comprehensive Cancer Network (NCCN) and the American Lung Association recommended lung cancer screening, modeled closely on the NLST, using a LDCT program for individuals ages 55 to 74 years with a 30 pack-year history of cigarette smoking and the ability to partake in organized programs of screening (Table 1). The American Association for Thoracic Surgeons recommends screening select groups from ages 50 to 79 years in its recently developed guidelines, which differ slightly from the NLST study population of 54- to 74-year-olds. In January 2013, the ACS also began recommending screening for lung cancer with LDCT. In addition, several patient organizations, such as the Lung Cancer Alliance and the National Lung Cancer Partnership, are currently advocating screening.
CHAPTER 2. METHODS

Key Questions and Analytic Framework

Using the methods developed by the USPSTF, the USPSTF and the Agency for Healthcare Research and Quality (AHRQ) determined the scope and key questions for this review. Investigators created an analytic framework with the key questions and the patient populations, interventions, and outcomes reviewed (Figure 1). The target population for lung cancer screening was asymptomatic men and women at average risk or current and former smokers at high risk.

Key Questions

1. How effective is screening for lung cancer in reducing mortality and morbidity?
 a. How effective is screening in persons at average risk?
 b. How effective is screening in persons at higher risk for lung cancer (e.g., current or former smokers)?
 c. Does effectiveness differ by subgroups (e.g., sex, age, race, presence of comorbid conditions, other lung cancer risk factors)?
2. What are the test characteristics (sensitivity, specificity, predictive value) of screening tests for lung cancer?
 a. How do these test characteristics vary by lung cancer risk?
 b. How are test characteristics different by subgroups (e.g., sex, age, race)?
3. What are the harms associated with lung cancer screening and are there ways to modify harms (e.g., unnecessary biopsy, radiation exposure, overdiagnosis, and psychosocial harms)?
4. How effective is surgical resection for the treatment of early (stage IA) NSCLC?
5. What are the harms associated with surgical resection of early (stage IA) NSCLC?

Key question 1 focuses on direct evidence that screening for lung cancer improves important health outcomes compared with no screening. The remainder of the analytic framework (key questions 2 through 5) evaluates the chain of indirect evidence needed to link screening for lung cancer with improvement in important health outcomes. Links in the chain of indirect evidence include the performance, yield, and acceptability of the screening test for lung cancer; the effectiveness of interventions for reducing morbidity and mortality; and any harms associated with screening and subsequent interventions.

Search Strategies

In conjunction with a research librarian, investigators searched the Cochrane Central Register of Controlled Trials and Cochrane Database of Systematic Reviews (through the fourth Quarter 2012), MEDLINE (2000 through December 2012), reference lists of papers, and Scopus for relevant English-language studies and systematic reviews. Search strategies are described in
Appendix A1.

Study Selection

At least two reviewers independently evaluated each study to determine eligibility for inclusion. Investigators selected studies on the basis of inclusion and exclusion criteria developed for each key question (Appendix A2). Papers were selected for full-text review if they were about lung cancer screening, were relevant to a key question, and met the predefined inclusion criteria. We restricted inclusion to English-language articles and excluded studies only published as abstracts. Studies of nonhuman subjects were also excluded, and studies had to include original data.

For key questions 1, 2, and 3, we included large (n ≥1,000) screening trials and/or studies of adult (age ≥18 years) men and women without signs of lung cancer. The screening interventions were LDCT, CXR, sputum cytology, or a combination of these screening interventions. For key questions 4 and 5, we focused on surgical resection of early (stage I) NSCLC. Outcomes were mortality, morbidity, impact on smoking cessation, quality of life, incidental findings, and harms from screening (such as false-positives, radiation, and overdiagnosis) and treatment. For key questions 4 and 5, we limited our review of treatments to studies involving 500 or more people and those published in the last 12 years, as our interest was in treatment outcomes that are relevant to current practice. Given differences in stage classification, diagnostic procedures used to define stage, and surgical techniques, we determined studies published before those dates would be unlikely to be generalizable to current clinical practice.

Data Abstraction and Quality Rating

For each included study, an investigator abstracted details about the patient population, study design, screening procedure, imaging assessment, analysis, followup, and results. A second investigator reviewed data abstraction for accuracy. Investigators used criteria developed by the USPSTF to rate the quality of each RCT as good, fair, or poor (Appendix A3) if they reported results for both comparison groups. Two investigators independently rated the quality of studies and resolved discrepancies by consensus. Several studies reported their findings in more than one paper. When this occurred, the data reported in this review are from the most recent publication unless unique data were presented in an older publication.

Data Synthesis

We assessed the aggregate internal validity (quality) of the body of evidence for each key question (“good,” “fair,” “poor”) using methods developed by the USPSTF, based on the number, quality and size of studies, consistency of results between studies, and directness of evidence.

Meta-analyses were conducted to summarize data and obtain more precise estimates on outcomes for trials that were homogeneous enough to provide a meaningful combined estimate.
In order to determine whether meta-analysis could be meaningfully performed, we considered the quality of the studies and the heterogeneity among studies in design, patient population, interventions, and outcomes. When meta-analysis could not be performed, the data were summarized qualitatively.

Only dichotomous outcomes (cancer incidence and mortality and all-cause mortality) were included in meta-analysis and relative risk (RR) was used as the effect measure. All combined effects were estimated using random-effects models.49 The Q statistic and the I^2 statistic (the proportion of variation in study estimates due to heterogeneity) were calculated to assess heterogeneity in effects between studies.50 Because of the small number of studies, it was not feasible to conduct subgroup analysis and meta-regression to explore heterogeneity. We conducted sensitivity analyses to check the impact of quality on the results. All analyses were performed using Stata/IC 12.0 (StataCorp, College Station, TX).

External Review

The draft report was reviewed by content experts, USPSTF members, AHRQ Project Officers, and collaborative partners (Appendix A4). Revisions have been made in response to reviewers’ and USPSTF members’ comments.
CHAPTER 3. RESULTS

We reviewed 8,149 references from electronic searches, reference list review, and manual searches of recently published studies. After applying inclusion and exclusion criteria, 1,734 full-text papers were reviewed. Of the full-text papers, 63 provided data to answer one or more of the key questions and were included in this evidence review. Appendix A5 shows the results of our literature search and selection process and Appendix A6 shows the list of excluded full-text papers.

Description of Randomized, Controlled Trials

We identified seven RCTs that reported results of screening with LDCT51-57 and two of screening with CXR (Table 2 and Appendix B1).58,59

Randomized Trials of Low-Dose Computed Tomography Compared With Chest X-Ray

National Lung Screening Trial

The NLST was a good-quality trial of lung cancer screening comparing LDCT with single-view posterior-anterior (PA) CXR.54 The NLST enrolled participants from August 2002 through April 2004 at 33 sites in the United States. Asymptomatic men and women ages 55 to 74 years who had at least 30 pack-years of smoking history and were current or former (>15 years since quitting) smokers were eligible. Of the 53,454 subjects enrolled, 26,722 were randomized to LDCT and 26,732 to CXR. Subjects were followed for a median of 6.5 years from randomization (maximum 7.4 years) for the outcomes of lung cancer incidence and all-cause mortality and 5.5 years for lung cancer mortality. Screening was conducted from 2002 to 2006 and participants followed in the trial from 2002 to 2009, when the trial was stopped early; participants are still being followed, however.

Subjects received a baseline evaluation (LDCT or CXR) with annual evaluations at 1 and 2 years. Screening radiology procedures were performed in accordance with a standard protocol. Results and recommendations of interpreting radiologists were reported to the participant and their health care provider within 4 weeks of a positive study; followup of abnormal scans was determined by the subject’s individual health care provider. A positive (“suspicious for lung cancer”) LDCT scan was one that showed any noncalcified nodule or mass 4 mm or greater in any diameter. A positive CXR image was one showing any noncalcified nodule or mass. Abnormalities such as adenopathy or pleural effusions were also classified as positive findings. Radiology findings suggesting other clinically significant processes were noted but not categorized in the publications to date. Abnormalities that were suspicious for lung cancer were classified as minor if they remained stable after the third round of screening.

The LDCT and CXR groups were both comprised of 59 percent men and 73 percent were ages 55 to 64 years, with a mean age of 61.4 years.60 At baseline, 48 percent in both groups were current smokers and 52 percent were former smokers, with a mean smoking history of 56 pack-
Overall, adherence to the screening protocol was high: 95 percent in the LDCT group and 93 percent in the CXR group. Contamination was also relatively small; among a subgroup of 500 subjects, 4.3 percent of the participants in the CXR group self-reported that they received a screening CT outside of the study.

Lung Screening Study

The Lung Screening Study (LSS) was a trial of lung cancer screening comparing LDCT with PA CXR designed as a feasibility study in preparation for the NLST.\(^5^5\) The trial was conducted at six sites in the United States from September 2000 through November 2001 and followup continued into 2002. Men and women ages 55 to 74 years who were current (≥30 pack-years) or former (quit <10 years ago) smokers were enrolled. Of the 3,318 subjects enrolled, 1,660 were randomized to LDCT and 1,658 to CXR. Subjects received a baseline (LDCT or CXR) and one annual evaluation, which were evaluated by 32 different radiologists; abnormalities were evaluated by community providers.

The definition of a positive screen changed between the baseline and annual screens. At baseline, noncalcified nodules 4 mm or greater, as well as several other specific findings (even with nodules <4 mm), were described as positive. At the 1 year examination, any noncalcified nodule 4 mm or greater was considered a positive screen, and other abnormalities could be considered suspicious for lung cancer at the discretion of the radiologist. Thus, the incidence screen involved more radiologist discretion than the baseline screen. Although more participants were randomized, only 1,586 (96% of 1,660) received a baseline LDCT and 1,550 (93% of 1,658) received a baseline CXR.

The overall population was 59 percent male and 68 percent were ages 55 to 64 years, though no mean or median age was reported. At baseline, 58 and 57 percent in the LDCT and CXR groups, respectively, were current smokers and 42 and 43 percent, respectively, were former smokers, with a median smoking history of 54 pack-years.

Randomized Trials of Low-Dose Computed Tomography Compared With No Low-Dose Computed Tomography

Detection and Screening of Early Lung Cancer by Novel Imaging Technology and Molecular Essays Trial

The Detection and Screening of Early Lung Cancer by Novel Imaging Technology and Molecular Essays (DANTE) Trial\(^5^1,6^1\) was a fair-quality trial of lung cancer screening comparing the addition of LDCT with a usual care protocol that involved baseline CXR (type not specified) and sputum cytology for all participants. The trial was conducted in Italy from March 2001 through February 2006. Male current or former smokers (≥20 pack-years) ages 60 to 74 years were eligible. Men were excluded if they did not meet eligibility criteria or if they had severe comorbidity or a life expectancy less than 5 years. Participants could have had cancer if treated more than 10 years previously or prior "early “ squamous cell cancer of the oral cavity or larynx if treated more than 5 years prior to enrollment.
Of the 2,472 subjects enrolled, 1,276 were randomized to LDCT and 1,196 to usual care. LDCT results were considered positive if they showed noncalcified pulmonary nodules or nonnodular lesions suggestive of malignancy. Generally, abnormalities were followed with interval LDCT or high resolution CT over several months; patients with lesions greater than 6 mm often underwent a trial of antibiotics with followup CT. Other LDCT abnormalities, such as noncalcified nodules 10 mm or greater in diameter or smaller nodules with spiculated margins, or nonnodular lesions that were suggestive of malignancy were also reported. Abnormalities found on screening LDCT were evaluated within the study by a diagnostic algorithm based on the abnormality’s size, growth, descriptive characteristics, and response to a trial of antibiotics.

All subjects received a baseline clinical interview and examination, CXR, and 3-day sputum cytology; those in the LDCT group also received LDCT. All subjects were followed annually for approximately 4 years with clinical interviews and physical examinations focused on detecting lung cancer; participants randomized to LDCT also underwent annual LDCT.

This trial included only men; the LDCT group had a mean age of 64 years and the usual care group of 65 years. At baseline, 56 and 57 percent in the LDCT and usual care groups, respectively, were current smokers, with a mean smoking history of 47 pack-years in both groups. The LDCT group had significantly more subjects with respiratory comorbidities at baseline compared with the CXR group (35% vs. 31%; p=0.04).

The final results of this trial have not yet been reported, but preliminary findings with median followup of 34 months were reported in 2009. As of January 2008, 3,612 LDCT scans had been performed. 95 percent of participants had completed baseline questionnaires, and 68 percent had provided baseline sputum samples. At 3 years, equivalent numbers of patients in each group had received an extra CT scan (6.0% and 6.1%) and an extra CXR (19%).

Danish Lung Cancer Screening Trial

The Danish Lung Cancer Screening Trial (DLCST) was a fair-quality trial comparing LDCT with usual care (no lung cancer screening). The DLCST enrolled participants between June 2000 and June 2001 and was conducted from October 2004 through March 2006 in a single center in Denmark. The study was planned to last 5 years, with a baseline LDCT followed by four annual LDCT scans. It was also designed to study predictors of smoking cessation and the effect of LDCT participation on smoking behaviors. The study population involved healthy men and women ages 50 to 70 years who were current or former smokers (≥20 pack-years smoking history). Former smokers must have quit after age 50 years and less than 10 years prior to enrollment in the study. Eligibility required the ability to walk up 36 steps without stopping; exclusions included prior treatment for breast or lung cancer, any cancer within the last 4 years, and any illness that would be expected to shorten life expectancy to less than 10 years. All study participants underwent baseline pulmonary function testing (PFT) and, to confirm smoking status, carbon monoxide level in exhaled air. In addition, all participants had an annual visit with PFTs and health questionnaires.

Nodules 5 mm or greater in diameter were considered positive or indeterminate unless they had benign characteristics. Nodules 5 to 15 mm in size were considered indeterminate and rescanned after 3 months; individuals with nonbenign appearing nodules greater than 15 mm were referred...
to chest physicians in two lung cancer diagnostic centers for evaluation. Nodules were considered benign if they appeared benign or were less than 5 mm. Nodules greater than 14 mm and any growing nodules were referred for diagnostic evaluation, as well as “suspicious” nodules. Growth was defined as an increase in volume of at least 25 percent. Volume doubling time (VDT) was used to measure growth rate and supplemented decision-making. Rapid VDT increased the suspicion that a nodule might be cancer. Participants needing further evaluation were referred to chest physicians in two specialized centers. Lung cancers in the usual care group were diagnosed and treated by the subject’s personal clinician, independent of the study, but this mostly involved the same lung cancer diagnostic centers used in the LDCT group.

Of the 4,104 subjects enrolled, 2,052 were randomized to LDCT and 2,052 to usual care. There were no significant baseline differences between the study groups in mean age (58 years), sex (56% male in LDCT and 55% male in usual care), mean smoking history (36 pack-years), or PFT results (mean forced expiratory volume in 1 second [FEV1], 2.9 in both groups; mean FEV1 % predicted, 93% in LDCT group and 94% in usual care group). Current smokers comprised 75 percent of the LDCT group and former smokers 25 percent. The usual care group included 77 percent current smokers and 23 percent former smokers. The authors noted that followup among the usual care group was not as complete as it was for the LDCT group.

Smoking cessation education for the DLCST involved less than 5 minutes of smoking cessation counseling by a certified smoking cessation nurse at annual visits. PFT results (abnormal and normal) were used to motivate participants to stop smoking. From the publication, it is unclear whether this counseling occurred at the initial visit or only at the annual followup visits.

Multi-Centric Italian Lung Detection

The Multi-centric Italian Lung Detection (MILD) study was a poor-quality trial of lung cancer screening comparing LDCT, either annually or biennially, with usual care (no lung cancer screening). The trial was conducted from September 2005 through January 2011 in a single center in Italy. Eligible subjects were men and women ages 49 years or older who were either current or former (quit ≥10 years ago) smokers with at least 20 pack-years of smoking and no history of cancer within the previous 5 years. Of the 4,099 subjects enrolled, 1,190 were randomized to annual LDCT, 1,186 to biennial LDCT, and 1,723 to usual care, with a median followup of 4.4 years. All subjects in this trial underwent PFT, blood testing, and a program of smoking cessation.

Evaluation of positive or suspicious LDCT scans was coordinated through the study center. Solid lesions with volume of 6 mm3 or less (diameter of \leq4.8 mm) were considered nonsuspicious. Solid nodules of approximately 5 to 8 mm received further evaluation, typically repeat LDCT at 3 months. Nodules greater than 250 mm3 were referred for additional evaluation, including positron emission tomography (PET) scanning or biopsy. Computer-aided detection that showed volumetric growth of 25 percent or more was considered suggestive of malignancy.

Participants in all three groups were similar at baseline in age (median of 57, 58, and 57 years for annual, biennial, and usual care, respectively), percent male (68%, 69%, and 63%, respectively), and smoking history (median of 39, 39, and 38 pack-years, respectively). There were more current smokers in the usual care group compared with the annual and biennial group (90% vs.
68 vs. 68%, respectively) and less former smokers (10% vs. 31% vs. 32%, respectively). Fewer participants in the usual care group had a FEV1 percent predicted that was less than 90 percent compared with both the annual and biennial groups (19% vs. 28% vs. 28%, respectively).

This study was rated poor-quality due to significant differences in the LDCT and usual care groups at baseline, raising concerns about the adequacy of randomization. In addition, there was substantially less followup among the usual care group (44.9 vs. 56 months). Finally, the study was underpowered and did not reach its planned size of 10,000 participants.

Nederlands-Leuvens Longkanker Screenings Onderzoek
The Nederlands-Leuvens Longkanker Screenings Onderzoek (NELSON) study is a trial of lung cancer screening comparing LDCT with no screening.56 The NELSON trial is currently ongoing; it began in 2003 and is being conducted in The Netherlands and Belgium. Male and female former and current smokers ages 50 to 75 years with adequate health status, no chest LDCT in the prior year, and no prior diagnosis of melanoma, renal, or breast cancer were eligible. Unlike other studies, lung cancer survivors (≥5 years) were eligible. To date, 15,588 subjects have been enrolled with one-to-one ratio randomization; screening results for 7,557 participants randomized to the LDCT group have been reported.

The LDCT group received LDCT at years 0, 1, and 3; the control group received no screening. In this trial, LDCT scans utilized volumetric measurements of detected nodules with calculation of VDT for evaluation. A positive test result was defined as a solid nodule with a volume greater than 500 mm³, a solid, pleural-based nodule with a diameter greater than 10 mm, or a partially solid nodule with solid component measuring greater than 500 mm³. Positive scans were also defined by VDT; a VDT less than 400 days was considered positive.

The NELSON investigators also assessed characterization and automated detection and measurement of lung nodules detected at screening,63-67 effect of screening on quality of life,68,69 smoking cessation during lung cancer screening,70 and the role of PET scans in evaluation of screen-detected nodules.71

Smoking cessation education for the NELSON trial included a standard smoking cessation brochure or a questionnaire requesting tailored smoking cessation information from the Dutch expert center on tobacco control. The standard brochure contained brief information about the advantages of quitting, the barriers to quitting, tips about how to quit smoking and how to prevent smoking relapse, and the possibilities for smoking cessation support. The questionnaire asked about smoking history, previous attempts to quit, attitudes toward smoking cessation, and self-efficacy in smoking abstinence.

Most baseline characteristics, including those for the no screening group, have not been reported to date. The LDCT group was described as 84 percent male with a mean age of 59 years.

ITALUNG
The ITALUNG study was a trial of lung cancer screening comparing LDCT with usual care (no lung cancer screening).57 The trial began in 2004 in Italy and baseline results were reported in 2009 for the LDCT group only. Enrolled subjects were men and women ages 55 to 69 years who
were either current or former (>10 years since quitting) smokers with at least 20 pack-years of smoking history. Of the 3,206 subjects enrolled, 1,613 were randomized to LDCT and 1,593 to usual care.

Subjects in the LDCT group underwent a baseline scan plus three annual scans. The control group received usual care. All subjects were invited for free access to a smoking cessation program. LDCT was considered positive when it showed at least one noncalcified nodule 5 mm or greater or a non-solid nodule 10 mm or greater in size. Nodules 8 mm or greater underwent PET scanning. Management of positive screening tests was carried out using followup LDCT, fluorodeoxyglucose PET, fine needle aspiration cytology, or fiber optic bronchoscopy. Subjects with positive screening tests were phoned and invited to meet with a pulmonologist for further assessment.

The overall population was 65 percent male, with a mean age of 64 years, and 65 percent were current smokers, with a median smoking history of 39 pack-years.

Randomized Trials of Chest X-Ray Compared With Usual Care

Mayo Lung Project
The Mayo Lung Project was a fair-quality trial comparing CXR and pooled 3-day sputum cytology examination every 4 months for 6 years (intensive screening) with a control group advised to have annual CXR and sputum cytology examinations (usual care). The trial was conducted from November 1971 through July 1976. There were 10,933 male smokers ages 45 years or older enrolled and after eliminating all cases of prevalent lung cancer (91 participants, or 0.8% prevalence), 4,618 subjects were randomized to intensive screening and 4,593 to usual care. 58

Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial
The Prostate, Lung, Colorectal, and Ovarian Cancer (PLCO) Screening Trial was a good-quality trial comparing annual CXR with usual care (no screening). Participants were enrolled from 1993 through 2001 and the trial was conducted from 1993 to 2011, with screening carried out from 1993 through 2004. Men and women from the general population ages 55 to 74 years were enrolled. Of the 154,901 subjects enrolled, 77,445 were randomized to PA CXR and 77,456 to usual care, with a median followup of 12 years. 59 The population was approximately 85 percent white, 49 percent male, and 45 percent never smokers. The evaluation of abnormal tests was conducted by participants’ personal health care providers, not within the study.

Key Question 1. How Effective Is Screening for Lung Cancer in Reducing Mortality and Morbidity?

Summary
One good-quality trial (n=53,454) of high-risk lung cancer participants with good generalizability found that LDCT compared with CXR conducted over three screens reduced
lung cancer mortality by 20 percent and all-cause mortality by 6.7 percent. Two smaller (n=2,472 and n=5,861) fair-quality European trials of high-risk lung cancer participants showed no benefit associated with LDCT screening compared with no LDCT screening. However, these were small trials with limited power that could have missed a true benefit. One small (n=4,099) poor-quality trial also suggested no benefit from screening with LDCT, and perhaps harm. When the three fair- or good-quality trials were combined in a meta-analysis, the combined RR of lung cancer mortality was 0.81 (95% CI, 0.72 to 0.91). When the poor-quality MILD trial was included, the RR of lung cancer mortality was 0.98 (95% CI, 0.68 to 1.40).

Two trials of screening with CXR compared with either less intense or no screening, one in the general population and one in high-risk individuals, showed no benefit associated with CXR screening. Only one study evaluated or reported findings on lung cancer screening in women and did not show a significant reduction in lung cancer mortality associated with CXR screening. No trials have reported data on lung cancer screening in different racial or ethnic populations. See Table 3 for a summary of lung cancer outcomes in these trials; for complete details on the RCTs included in this review, see Appendix B1, and for the details on their quality ratings, see Appendix B2.

Evidence

Low-Dose Computed Tomography
To evaluate the effectiveness of screening for lung cancer with LDCT, we limited our review to RCTs of screening published since the previous evidence review that reported results in both the LDCT and control groups (Table 2 and Appendix B1). We identified seven RCTs that reported results of screening with LDCT; however, only four have reported results in both the intervention and control groups (Appendix B2).

Comparing low-dose computed tomography with chest x-ray. Only the NLST has reported results for both the intervention and control groups comparing periodic LDCT with CXR. The NLST (n=53,454) reported its findings after the trial was stopped early on review by the data safety monitoring board. After a median followup of 6.5 years for lung cancer incidence and all-cause mortality, the cumulative incidence of lung cancer in the LDCT group was 645 per 100,000 person-years (py) and 572 per 100,000 py in the CXR group; the RR was 1.13 (95% CI, 1.03 to 1.23) for incident lung cancer. Over 5.4 years of followup, lung cancer mortality in the LDCT group was 247 per 100,000 py and 309 per 100,000 py in the CXR group, with a reduction of lung cancer mortality of 20.0 percent (95% CI, 6.8 to 26.7; p=0.004) in the LDCT group. The RR of all-cause mortality was reduced by 6.7 percent (95% CI, 1.2 to 13.6). The authors calculated a number needed to screen (NNS) with LDCT to prevent one lung cancer death as 320 (among those undergoing ≥1 screens). Intention-to-screen analysis determined a NNS of 310 (95% CI, 190 to 840) to prevent one lung cancer death. The NNS to prevent one death from any cause was 219 (95% CI, 112 to 5,000). This corresponds with an absolute risk reduction of lung cancer death of 4.6 (95% CI, 0.2 to 9.0) per 1,000 participants.

Comparing low-dose computed tomography with no low-dose computed tomography. Three randomized trials in four publications comparing periodic LDCT screening with no LDCT screening (“usual care”) have reported lung cancer outcomes in both groups.
Though the final results of the DANTE trial (n=2,472) have not been published, preliminary findings were reported in 2009, with a median followup of 34 months. However, as noted above, followup was longer in the LDCT group by 657 person-months (35.7 months in the LDCT group compared with 31.5 months in the control group).51 The baseline prevalence of lung cancer was 2.2 percent (28 cases) in participants randomized to LDCT and 0.7 percent (8 cases) in the control group. After approximately 3 years of followup, the cumulative incidence of lung cancer was 4.7 percent (60 cases) for LDCT and 2.9 percent (34 cases) for the control group. The corresponding incidence rate was 1,600 per 100,000 py in the LDCT group and 1,015 per 100,000 py in the usual care (nonLDCT) group. The 3-year cumulative lung cancer mortality rates were 1.6 percent (n=20) in the LDCT group and 1.7 percent (n=20) in the control group, a nonstatistically significant difference. The corresponding lung cancer mortality rates were 558 per 100,000 py in the LDCT group and 597 per 100,000 py in the control group (RR, 0.83 [95% CI, 0.45 to 1.54]). All-cause mortality was also equivalent in both groups at 3 years, with a RR of 0.85 (95% CI, 0.56 to 1.27). All rates are calculated given the person-months of followup appropriate for each study group (rather than the mean). The study had only 80 percent power to show a 35 percent reduction in lung cancer mortality.

In the DLCST (n=4,104), the cumulative incidence of lung cancer in the LDCT group was 0.7 percent (incidence, 706 per 100,000 py) and 0.5 percent (incidence, 245 per 100,000 py) in the usual care group after a median followup of 4.8 years (RR, 2.88 [95% CI, 1.85 to 4.49]).52 Lung cancer mortality was 0.7 percent (mortality rate, 154 per 100,000 py) in the LDCT group and 0.5 percent (mortality rate, 112 per 100,000 py) in the usual care group, with a RR of 1.37 (95% CI, 0.63 to 2.97). Overall, there were 61 deaths (3%) in the LDCT group (624 per 100,000 py) and 42 deaths (2.1%) in the usual care group (429 per 100,000 py), with a RR of 1.46 (95% CI, 0.99 to 2.15).52 This study had 80 percent power to show a 20 percent lung cancer mortality reduction after 5 years at the 0.05 p-value level.

In the MILD trial (n=4,099), 25 lung cancers were diagnosed (20 LDCT-detected) in the biennial LDCT group, 34 (29 LDCT-detected) in the annual LDCT group, and 20 in the control group.53 The incidence rates of lung cancer per 100,000 py were reported as 457 in the LDCT biennial group, 620 in the LDCT annual group, and 311 in the control group (RR, 1.47 [95% CI, 0.82 to 2.64] for biennial vs. control and RR, 1.99 [95% CI, 1.16 to 3.43] for annual vs. control). Lung cancer mortality was not significantly different between the control and screened groups combined after adjustment for age and smoking (hazard ratio [HR], 1.64 [95% CI, 0.67 to 4.01]). When comparing the lung cancer mortality rate among the biennially screened group with the control group, the RR was 1.00 (95% CI, 0.34 to 2.98); among the annual screen group compared with the control group, the lung cancer mortality HR was 1.99 (95% CI, 0.80 to 4.96); however, this is not adjusted for age and smoking. All-cause mortality was not statistically different comparing screened groups combined with the control group (RR, 1.40 [95% CI, 0.82 to 2.38]). However, when comparing the annually screened group with the control group, the all-cause mortality RR was 1.80 (95% CI, 1.03 to 3.13). The RR of all-cause mortality among the biennially screened compared with the control group was 1.17 (95% CI, 0.63 to 2.17). Of note, 10 squamous cell cancers were identified in the annual LDCT group and one in the biennial LDCT group, with similar numbers of adenocarcinomas in each of the LDCT groups; tumor histology was not reported for the control group.53 As with the DANTE trial, all rates are calculated based on the followup reported for each study group. Again, as noted above, there are
significant concerns about the adequacy of randomization in this study, as well as differences in followup between groups, with substantially more followup in the LDCT groups compared with the usual care group.

Results of pooled analysis. When the three fair- or good-quality studies were combined in a random effects meta-analysis, the RR of lung cancer incidence was 1.63 (95% CI, 0.95 to 2.80) (**Figure 2**); when the poor-quality MILD trial was included, the RR was 1.70 (95% CI, 1.07 to 2.68). For lung cancer mortality, the RR was 0.81 (95% CI, 0.72 to 0.91) (**Figure 3**); when the poor-quality MILD trial was included, the RR was 0.98 (95% CI, 0.68 to 1.40). For all-cause mortality, the RR was 1.02 (95% CI, 0.78 to 1.33) (**Figure 4**); when the poor-quality MILD study was included, the RR was 1.13 (95% CI, 0.84 to 1.53).

Chest X-Ray

To evaluate the effectiveness of screening for lung cancer with CXR, we limited our review to RCTs of screening that reported results in both the CXR and control groups published since the previous evidence review. We identified an update of the Mayo Lung Project of lung cancer screening with quarterly CXR screening conducted in the 1970s, and the first major publication of lung cancer results from the PLCO Screening Trial, which evaluated the effectiveness of screening with annual CXR in reducing lung cancer mortality (**Table 2** and **Appendix B1**).

After 20 years of followup in the Mayo Lung Project, lung cancer mortality rates were 440 per 100,000 py (95% CI, 390 to 490) and 390 per 100,000 py (95% CI, 350 to 440) in the intensive screening group and control group, respectively. In 2006, the results of this trial were updated and continued to show no benefit for intensive versus periodic screening with CXR in reducing lung cancer mortality.

After 6 years of followup in the PLCO Screening Trial, the RR for lung cancer mortality among the entire CXR screened group compared with the usual care group was 0.91 (95% CI, 0.80 to 1.03). After 13 years of followup, the cumulative incidence of lung cancer in the CXR group was 200 per 100,000 py and 192 per 100,000 py in the usual care group. Over the same time period, there were 1,213 lung cancer deaths (140 per 100,000 py) in the CXR group and 1,230 (142 per 100,000 py) in the usual care group, with a RR of 0.99 (95% CI, 0.87 to 1.22). All-cause mortality rates were 1,052 per 100,000 py in the CXR group and 1,071 per 100,000 py in the usual care group, with a RR of 0.98 (95% CI, 0.95 to 1.01) after 13 years of followup.

In addition to the analysis of CXR screening outcomes in the general population, the PLCO Screening Trial also assessed the effectiveness of CXR screening among individuals at high risk of lung cancer by evaluating the outcomes of individuals who would be eligible for the NLST (all current and former smokers ages 55 to 74 years with ≥30 pack-year smoking history). Among the 30,321 individuals meeting these criteria, the cumulative incidence of lung cancer through 6 years of followup was 606 per 100,000 py in the intervention group and 608 per 100,000 py in the control group (RR, 1.00 [95% CI, 0.88 to 1.13]). Over the same period of followup, the lung cancer mortality rates were 361 per 100,000 py in the CXR group and 383 per 100,000 py in the usual care group, with a RR of 0.94 (95% CI, 0.81 to 1.10). This study also evaluated lung cancer mortality associated with screening among women and found a RR of 0.92 (95% CI, 0.81 to 1.06) after 13 years of followup.
Sputum Cytology

The searches did not identify any new studies that evaluated screening for lung cancer with sputum cytology. Sputum cytology was included as part of the study protocol in the DANTE trial, but results on effectiveness have not been reported.\(^{51,61}\)

Benefits by Subgroup

All of the RCTs of screening with LDCT were conducted in participants at high risk of lung cancer based on participants’ history of prior or current smoking. None evaluated low- or average-risk participants. The only CXR trial evaluating annual CXR screening compared with usual care among the general population was the PLCO Screening Trial, which showed no benefit of screening, with a RR of lung cancer death of 0.94 (95% CI, 0.81 to 1.10) after 6 years of followup and 0.99 (95% CI, 0.87 to 1.22) after 13 years of followup.\(^{59}\) None of the trials of LDCT reported findings by sex or race. Only the PLCO Screening Trial reported findings by sex, as noted above, and found the RR for lung cancer mortality among women from the general population (smokers and nonsmokers) screened annually with CXR was 0.92 (95% CI, 0.81 to 1.06). Data on women smokers enrolled in this trial have not yet been reported.

Key Question 2. What Are the Test Characteristics of Screening Tests for Lung Cancer?

Summary

Sensitivity of LDCT was reported in one trial and five cohort studies and ranged from 80 to 100 percent but was most often greater than 90 percent; however, the method for determining sensitivity varied among studies. Specificity was reported in two RCTs and five cohort studies and ranged from 28 to 100 percent; again the method for determining specificity varied among the studies. The calculated positive predictive value for an abnormal (positive or indeterminate) LDCT scan predicting lung cancer ranged from 2.2 to 42 percent. The calculated positive predictive value of a recommendation for biopsy or surgery based on LDCT for predicting lung cancer ranged from 50 to 92 percent. The sensitivity of CXR for lung cancer was reported in the prior review as 25 percent compared with LDCT, while specificity was not evaluated. No studies reported test parameters for sputum cytology.

Evidence

In the previous evidence review,\(^1\) test characteristics of CXR and LDCT were summarized but not systematically reviewed; test characteristics of sputum cytology testing were not reviewed, although the effectiveness of screening with cytology was. For the current evidence review, data were included from the RCTs described above, as well as eight cohort studies meeting criteria for this review (Appendix B3). In addition, when data were not directly reported but were provided, we calculated the positive predictive value of LDCT both for “abnormal” or “suspicious” findings requiring further evaluation and for biopsy (or surgery if biopsy not reported) that resulted from the evaluation of an abnormal or suspicious LDCT.
Low-Dose Computed Tomography
All of the RCTs that reported data contributed to the discussion of test characteristics of LDCT. In addition, we identified eight cohort studies of LDCT that provided data on test characteristics. The findings from the cohort studies are summarized in Appendix B3. Because of variable ways of reporting results and/or test parameters, we did not calculate test parameters. It is important to note that there is no defined “gold standard” for evaluating either the sensitivity or specificity of LDCT.

Reported sensitivity of LDCT in prevalence and incidence screens ranged from 80 to 100 percent, with most studies reporting sensitivity greater than 90 percent. This number reflects variation in the definition of a false-negative. Most studies report a false-negative scan as LDCT that was negative within 1 year or less of the participant developing lung cancer. However, one study defined false-negative scans as those in which a participant developed greater than stage I lung cancer within 1 year of a negative screening scan. In addition, some studies reviewed prior LDCT scans when a nodule was identified on an incidence scan. If the abnormality was seen on a prior LDCT scan, the sensitivity was reported as if the prior scan had identified the nodule.

Specificity was reported in two RCTs and five cohort studies. In these studies, specificity ranged from 28 to 100 percent. Variability in reporting of specificity can be attributed to heterogeneity in definitions between studies. Some trials report three categories of findings: positive, indeterminate, and negative. Also, some studies reported false-positive examinations as those categorized as “positive” on the screening LDCT scan; indeterminate examinations that were clarified by either treatment of an abnormality or another CT scan within the first few months of the indeterminate LDCT scan were not always considered or reported as false-positive examinations. We considered this type of specificity program or protocol specificity. Further complicating this issue, some studies only reported the number of positive scans or the number of nodules, rather than the number of participants with a positive scan, which is the most important measure in considering potential harms. This issue also complicates the understanding of positive predictive values discussed below.

Chest X-Ray
The previous evidence review assessed the test characteristics of CXR by comparing the findings among patients subjected to both LDCT and CXR and evaluating these parameters using LDCT as the gold standard, which may be problematic because of LDCT’s low specificity. In that review, the sensitivity of CXR for detecting lung cancer compared with LDCT was 25 percent. No new studies directly reporting CXR test characteristics were identified by the current evidence review.

Sputum Cytology
As noted above, the previous evidence review did not evaluate the test characteristics of sputum cytology as a screening test for lung cancer, and thus did not provide data on this measure for the current evidence review. The current evidence review did not identify any papers that reported sputum cytology test characteristics published in the medical literature since the previous evidence review. One RCT and two cohort studies included in the current evidence review collected sputum samples from participants, but no studies formally reported on the test
characteristics of sputum cytology testing. It is likely that the absence of recent data on this topic reflects the fact that sputum cytology has not been studied as a screening method since trials conducted in the mid 1970s failed to show benefit from screening with sputum cytology.1 Accordingly, sputum cytology testing is now rarely used for lung cancer screening.

Test Characteristics by Subgroups
No studies provided data on test characteristics by subgroups other than by risk profile. Since the predictive value of tests will vary with prevalence, all screening tests will have higher predictive value in individuals at higher baseline risk of lung cancer.

Key Question 3. What Are the Harms Associated With Lung Cancer Screening and Are There Ways to Modify Harms?

Summary

Radiation Exposure
Two RCTs and two cohort studies reported radiation associated with one LDCT scan ranging from 0.61 to 1.5 mSv; however, only one study reported cumulative radiation exposure associated with the screening program, which was estimated at 6 to 7 mSv.

False-Positive Examinations and Followup Evaluations
Positive examinations ranged from 9.2 to 51 percent (of participants) in baseline screens, with calculated positive predictive values for abnormal studies ranging from 2.2 to 36 percent; most abnormal scans were resolved with further imaging. Positive examinations were lower in subsequent screens, with positive predictive values for abnormal studies predicting lung cancer of 4 to 42 percent and most abnormal scans were resolved with further imaging. Positive predictive values for abnormal LDCT scans with recommendations for biopsy ranged from 50 to 92 percent.

False Reassurance
The sensitivity of LDCT for detecting lung cancer ranged from 80 to 100 percent, implying a false-negative rate of 0 to 20 percent. The harm of false reassurance was not evaluated in any study.

Overdiagnosis
Overdiagnosis was not formally reported in any study. However, of the four RCTs of LDCT reporting results in both the LDCT and no LDCT groups, overdiagnosis was suggested in one trial showing an excess of 119 lung cancers among 26,722 participants after 6.5 years of followup. Four RCTS reported more early-stage lung cancer in LDCT-screened groups than among the control group but not a smaller number of advanced lung cancers. However, there was insufficient followup in these studies to fully evaluate overdiagnosis. Data from one older trial of lung cancer screening with CXR involving approximately 9,000 high-risk participants showed that after 20 years of followup an excess of lung cancers diagnosed in the screened group persisted. The PLCO Screening Trial of CXR screening in the general population (n=155,000) found 18 excess lung cancers in the CXR group (compared with no CXR) after 6 years of
followup (2 years after screening ended) and 76 lung cancers after 13 years of followup (RR, 1.05 [95% CI, 0.98 to 1.12]); data from the same trial evaluating overdiagnosis only among a high-risk population showed a cumulative incidence of lung cancer of 606 per 100,000 py in the CXR group and 608 per 100,000 py in the usual care group after 6 years of followup (RR, 1.00 [95% CI, 0.88 to 1.13]).

Psychosocial Consequences
Five studies evaluated psychosocial consequences among individuals undergoing LDCT screening. Overall, LDCT screening did not appear to significantly impact overall health-related quality of life and no long-term difference in anxiety was reported, although in the short-term, three studies suggested increased anxiety among those with positive or indeterminate results compared with baseline. Distress was decreased among individuals in one trial with negative results compared with baseline.

Smoking Behavior
RCTs identified no differences in smoking cessation rates, smoking relapse rates, or smoking intensity when comparing individuals randomized to LDCT with no LDCT. In RCTs, smoking behavior among subjects with abnormal scans compared with those with negative scans showed mixed results; one study showed a tendency toward smoking abstinence among those with abnormal scans and one showed no difference. Similar mixed results were seen in cohort studies that compared smoking behaviors among those with abnormal and negative scans. One cohort study suggested that physician referral for patients with abnormal screening LDCT scans (compared with nonreferral for those with negative studies) may result in higher smoking cessation rates.

Incidental Findings
Most of the studies included in this review reported incidental findings. However, there was no standardized approach to reporting these findings. Among the studies of LDCT, nonpulmonary findings were common; infections and other cancers were also diagnosed. Coronary artery calcification was identified in approximately 50 percent of participants in one cohort study evaluating LDCT.

Evidence

Radiation Exposure
One of the direct harms associated with LDCT is radiation exposure. Data on LDCT parameters and radiation exposure in trials of LDCT screening are shown in Table 4. Two RCTs and two cohort studies reported the radiation associated with one LDCT scan as ranging from 0.65 to 1.5 mSv. Of the seven RCTs of LDCT screening included in the current evidence review, only the ITALUNG trial accounted for cumulative radiation exposure, using estimates of exposure for specific scanners and techniques employed. In 1,406 subjects randomized to LDCT screening, the four screening LDCT scans accounted for 77 percent of all radiation exposure, and evaluation of abnormal findings with additional CT scans, PET/CT, and CT-guided biopsy accounted for 23 percent. The cumulative exposure from screening over 4 years averaged 6 to 7 mSv. In individual patients screened on a single detector scanner, exposure over 4 years was as high as 21.5 mSv, and with four negative studies on multidetector (MD) CT scanners, as low as
MDCT is associated with lower radiation doses than single-detector CT technology. The cumulative effective doses per 1,000 subjects were 3.3 mSv using an MDCT scanner and 5.8 or 7.1 mSv using a single-detector scanner. No studies reported radiation exposure among individuals enrolled in CXR trials. The reported LDCT exposures compare with background radiation exposures in the United States that average 2.4 mSv per year, with significantly higher exposures at higher elevations. Also, to provide context, other imaging radiation exposure rates are approximately 1.7 mSv for head CT, 5 mSv for lumbosacral spine x-ray, and 0.7 mSv for mammography. Notably, a roundtrip flight from New York City to London would be associated with radiation exposure of approximately 0.1 mSv.

False-Positive Examinations and Followup Evaluations

The RCTs of LDCT reported the number of noncalcified nodules identified on screening and associated followup evaluations in varying detail. However, the definition of a positive LDCT scan, the categorization of nodules, the methods used to follow nodules, and the method of reporting nodules (by individual or by screen) varied among the studies, making comparisons difficult. In addition, some studies reported all lung cancer and some (NSCLC) only the primary object of screening. Notably also, the evaluations occurring in patients randomized to usual care were rarely reported in the trials that only presented early information on the intervention groups or baseline data.

Since the predictive value of tests will vary with the prevalence of the disease in the population, we have summarized baseline and annual or overall prevalence rates (cumulative incidence) in Table 5 for both intervention and control groups. In trials of LDCT that reported the prevalence of lung cancer detected at baseline in high-risk populations, the prevalence ranged from 0.6 to 2.2 percent, suggesting different baseline risk for lung cancer or different LDCT program characteristics. Among the cohort studies, reported baseline prevalence ranged from 1.1 to 4.5 percent in high-risk populations. The studies included in the current evidence review vary by number of incidence screens, as well as length of followup, and some only report cumulative incidence or overall rates, making it difficult to compare cumulative incidence rates. These numbers are shown in Tables 5 and 6. Two cohort studies conducted in Japanese populations evaluated LDCT screening in the general population and reported lower lung cancer prevalence rates of 0.9 to 1.0 percent overall, but did not separately report data on prevalence and incidence screens.

One of the most common and important harms to consider in screening for lung cancer is the evaluation of patients with positive scans, which often involves more imaging and sometimes more invasive procedures such as bronchoscopy, fine needle biopsy, and/or surgery. Importantly, surgery is used both for diagnosis and treatment of early-stage lung cancer, making it difficult to separate the two. We attempted to evaluate these harms when they were reported in the studies; however, reporting varied substantially. To address this issue, we examined rates of positive scans and the subsequent evaluation of abnormal scans in both the RCTs and the cohort studies; this information is summarized in Tables 5 and 6. The prevalence of findings defined as “positive” varied between studies. On average, the number of positive examinations was higher on baseline screens and ranged from 9.2 to 39 percent in the RCTs and 9.8 to 51 percent in the cohort studies, with most in the 10 to 20 percent range. The positive predictive value for an abnormal baseline finding showing cancer ranged from 2.2 to 36 percent.
in the RCTs. Among the cohort studies, the positive predictive value of abnormal baseline scans requiring further evaluations ranged from 4 to 21 percent, meaning that 79 to 96 percent of positive baseline scans did not result in a diagnosis of cancer. Since most positive scans were resolved by comparison with prior scans or further imaging, we also calculated the positive predictive value for a patient being referred for biopsy in the RCTs as a measure of harm. These positive predictive values ranged from 50 to 81 percent, suggesting that most patients who undergo an invasive procedure, such as biopsy, are diagnosed with lung cancer; in the cohort studies, the positive predictive value for patients referred to biopsy or surgery ranged from 66 to 92 percent.

The NLST was the only RCT that reported complications from diagnostic procedures used to evaluate a positive LDCT scan. In this study, complications from diagnostic procedures were low; the rate of at least one complication was 1.4 percent in the LDCT group and 1.6 percent in the CXR group. Major complications were infrequent in both groups of this study. Among individuals diagnosed with lung cancer, there were 75 major complications in the LDCT group (11.5% of positive screen results determined to be cancer) and 24 in the CXR group (8.6% of positive screen results determined to be cancer) that were associated with invasive diagnostic procedures. However, among individuals with positive studies who were not found to have lung cancer and underwent invasive procedures, there were 12 major complications among LDCT participants (0.1% of positive screen results determined to not be cancer) and four among CXR participants (0.1% of positive screen results determined to not be cancer). Notably, 16 participants in the LDCT group died within 60 days after an invasive procedure (10 of whom had lung cancer), as did 10 (all with lung cancer) in the CXR group. It is not known if the procedure itself was the cause of death and deaths were not reported separately by procedure.

False-Negative Examinations and False Reassurance
The sensitivity of LDCT for detecting lung cancer at baseline was reported in one RCT as 96 percent. Though sensitivity of incidence screens was rarely reported, the NELSON trial reported it as 96 percent. Sensitivity was reported in five cohort studies and ranged from 80 to 100 percent. These data imply false-negative examination rates in the range of 4 to 20 percent. We found no studies that evaluated the potential harm associated with false-negative examinations, although this is an important harm to consider given the potential for false reassurance of patients and/or providers, which may delay evaluation of suspicious symptoms in the future.

Overdiagnosis and Overtreatment
One of the most concerning aspects of screening for lung cancer is the issue of possible overdiagnosis and treatment of lung cancer that will not impact a patient’s life either due to mild disease that does not progress, cancer that resolves spontaneously, or death from other causes (competing mortality). If screening is effective and does not cause overdiagnosis after an adequate period of followup, both groups of a RCT will have the same number of cancers, but more early-stage and less late-stage (in absolute terms) disease should be found in the screened group. Alternately, finding more cancers in the screened group compared with the control group, especially more early-stage disease with the same number of later-stage disease, would be evidence for overdiagnosis.
While the optimum followup duration for measuring overdiagnosis is not known, the NLST found 119 more lung cancers (1,060 vs. 941) in the LDCT group compared with the CXR group after a median of 6.5 years of followup, suggesting overdiagnosis.54 In addition, we found evidence in the LDCT trials of more early-stage lung cancers in the LSS, DANTE, MILD, and DLCST trials.51-53,55 However, with the exception of the NLST, these studies did not report fewer stage III to IV lung cancers in the LDCT group compared either with CXR or usual care.

Recent data from the Italian Continuing Observation of Smoking Subjects cohort study involving 5,203 asymptomatic participants aged 50 years and older describing VDT as a measure of potential overdiagnosis indicates variable VDT among lung cancers diagnosed in a screening program.99 There were 175 patients diagnosed with lung cancer either with baseline LDCT (n=55) or subsequent LDCT (n=120). Of the 120 incident lung cancers, the authors demonstrated that VDT varies continuously from very slow-growing (VDT \geq600 days) to fast-growing (VDT of 52 days), with 75 percent of the incident lung cancer categorized as fast-growing. The authors suggest that this pool of slow-growing tumors are potentially those that are “overdiagnosed,” but note that the growth rate of what appear to be slow-growing (indolent) cancers can increase markedly from one scan to the next, complicating decisions about appropriate followup and treatment of slower-growing lesions. In addition, the lung cancer risk profile of patients with lung cancer in this study correlated with VDT, suggesting that slow-growing cancer is more common in lower-risk people.

Data from the 1970s Mayo Lung Project of quarterly CXR screening compared with less frequent CXR screening over 4 years have shown a persistent excess of lung cancers diagnosed in the CXR group (585 vs. 500) after 20 years of followup (16 years after screening ended) without a reduction in mortality or tumors identified at late stages.58 Interestingly, in the 16 years after the Mayo Lung Project trial ended, more lung cancer was diagnosed in the CXR group (379 cases) compared with the control group (340 cases), in the absence of a screening program. Data from the PLCO Screening Trial conducted in the general population identified 76 extra lung cancers after 13 years of followup, with a cumulative incidence RR of 1.05 (95% CI, 0.98 to 1.12), suggesting less overdiagnosis. However, data from the PLCO Screening Trial at 6 years of followup (2 years after screening stopped) showed an excess of 18 lung cancers in the CXR group compared with the usual care group.59 More relevant to screening high-risk individuals, in PLCO participants at high risk of lung cancer due to tobacco exposure, the cumulative incidence of lung cancer after 6 years of followup was the same in both groups: 606 per 100,000 py in the CXR group and 608 per 100,000 py in the usual care group after 6 years of followup (RR, 1.00 [95% CI, 0.88 to 1.13]).

Psychosocial Consequences

Three RCTs (in five publications) of either fair- or good-quality evaluated psychosocial consequences among individuals undergoing lung cancer screening with LDCT.58,69,77,100,101 Overall, LDCT screening did not appear to significantly impact general health-related quality of life, regardless of whether the screen findings were negative or indeterminate. Similarly, most studies did not find a long-term difference in anxiety, regardless of the screen result. In the short-term after a LDCT, approximately half of the patients reported discomfort about waiting for the results and dread of the results.68 Measured 2 months after baseline LDCT in the NELSON trial, distress levels increased from baseline after an indeterminate result.77 Compared with baseline,
distress decreased for subjects with negative LDCT results. For subjects in the Pittsburgh Lung Screening Study (PLuSS), compared with baseline, state anxiety increased at 1 to 2 weeks and 6 months after an indeterminate result but returned to baseline 12 months after the LDCT scan. Similarly, for 60 subjects in the Mayo Clinic Project with a family risk of lung cancer who had a nonnegative result, worry increased from baseline in the short-term but returned to baseline 6 months after the LDCT scan. In a report based on the NELSON trial, the only study to compare screened subjects with usual care subjects, health-related quality of life and anxiety were similar 2 years after enrolling in the study for both screened and usual care subjects. This study did report a short-term increase from baseline in distress for subjects who received an indeterminate result after LDCT that returned to baseline 2 years after the baseline scan.

Smoking Behavior

Seven studies, including three RCTs (in four publications) and four cohort studies (in five publications), reported smoking behavior changes in lung cancer screening studies and were included (Table 7).

Screening versus no screening. Two RCTs compared the effect of LDCT lung cancer screening with no screening on rates of smoking cessation. The DLCST found smoking abstinence (defined as >4 weeks of abstinence) rates of 10 and 11 percent in the no screening and LDCT groups, respectively, after 1 year of followup. The NELSON trial reported prolonged smoking abstinence (defined as 7-day point prevalence abstinence and <5 cigarettes since 2 weeks after their quit date) rates of 15 and 13 percent in the no screening and LDCT groups, respectively, after 2 years of followup (p=0.35). The study also reported a non–intention-to-treat analysis among only those who responded to the followup smoking behavior survey. In this analysis, the prolonged abstinence rates were 19 percent in the no screening group and 15 percent in the LDCT group (OR, 1.40 [95% CI, 1.01 to 1.92]; p=0.04), which the authors interpreted as an unfavorable influence of screening on smoking behavior. However, response rates differed significantly among the groups, with a 78 percent response from the no screening group and 91 percent response from the LDCT participants. Because of the significantly different response rates among LDCT and control groups, we believe the most valid measure of smoking cessation comes from evaluating the full sample rather than just the responders.

Relapse rates were only reported in the DLCST, which found baseline former smokers had a relapse rate of 9.3 percent in both the no screening and the LDCT groups after 1 year, assuming nonattendees did not restart smoking. If nonattendees resumed smoking, the relapse rates may have been as high as 21 and 17 percent in the no screening and LDCT groups, respectively. Smoking intensity changes were only reported in the NELSON trial and did not differ between the no screening and LDCT groups. In the no screening group and LDCT groups, respectively, 32 compared with 29 percent maintained baseline smoking intensity, 14 compared with 18 percent increased smoking intensity, and 54 compared with 53 percent decreased smoking intensity.

Comparing positive, indeterminate, and negative results. Two RCTs and two cohort studies in three publications compared the effect of receiving a positive, negative, or indeterminate LDCT screening result on smoking cessation and relapse rates. An additional
study evaluated the effect of physician referral category on these outcomes.

The two RCTs reported on different groups and had varying followup durations, making comparisons difficult. The DLCST demonstrated a tendency toward increased smoking abstinence and decreased relapse rates after 1 year in participants with a positive LDCT result. For baseline smokers with a positive result, the quit rate was 18 versus 11 percent in the group with negative LDCT results (p=0.04). In baseline former smokers with a positive LDCT result, the relapse rate (smoking during the year before followup) was significantly less (4.7%) than for those with a negative result (11%; p<0.01). A second trial (NELSON) reported no statistically significant differences in prolonged smoking abstinence between male baseline smokers who received a negative LDCT screen result and those who received an indeterminate result after 2 years of followup (8.9% vs. 12%, respectively; p=0.19). Prolonged abstinence rates in this study did not differ significantly between participants with a single indeterminate LDCT result and those with multiple indeterminate results, though there was a trend toward higher abstinence rates among participants with multiple indeterminate findings (11% for single indeterminate result and 15% for ≥2 indeterminate results; p=0.26).

Two cohort studies in three publications reported mixed findings for the effect of LDCT screen results on smoking behavior. The Mayo Clinic Project cohort study reported increased odds of smoking abstinence among current smokers who received followup recommendations based on the prior year’s LDCT scan (OR, 1.37 [95% CI, 1.12 to 1.67]; p=0.002). At 3 years of followup, those who received three recommendations for interim followup had the highest percentage of smoking abstinence (42%). For those that received no recommendations (implying a negative screening LDCT), the smoking abstinence rate was 20 percent. The influence of followup recommendations did not reach statistical significance for relapse rates among former smokers or recent quitters. Another cohort study, the Early Lung Cancer Action Program (ELCAP), reported that a positive LDCT scan was not a significant predictor for prolonged abstinence in participants without a lung cancer diagnosis within 1 year (HR, 1.34 [95% CI, 0.90 to 1.99]). A positive LDCT finding was also not significantly associated with relapse of baseline smokers who quit.

The PLuSS cohort study reported the effect of physician referral category on smoking behavior. LDCT screen results were used to categorize participants by risk (based on the LDCT findings): no referral, other referral, low suspicion (<5% predicted probability for lung cancer), or moderate/high suspicion (>5% predicted probability for lung cancer). The proportion of baseline smokers who were abstinent for more than 30 days at 1 year followup increased with increasing category of risk, from 14 percent in the no referral group to 26 percent in the moderate/high suspicion group (excluding participants who received a lung cancer diagnosis over this period).

Incidental Findings
Most of the studies included in the current evidence review reported incidental findings discovered in the course of screening for lung cancer. As there is no standardized research approach to defining what is considered an important incidental finding in lung cancer screening, investigators varied in what findings they reported. For example, researchers from the PLCO Screening Trial reported the frequency of emphysema and chronic obstructive pulmonary disease
incidentally detected by screening CXR,59 whereas the majority of other RCTs in the current evidence review did not. Additionally, some studies reported incidental findings by radiographic description, such as lymphadenopathy, but others provided a clinical diagnosis, such as lymphoma. Given the variability in reporting practices between studies and that the reported incidental findings could not always be traced to screening modality (CXR or LDCT), it was not possible to calculate the frequency of incidental findings in a meaningful way.

Among the lung cancer screening RCTs, nonpulmonary nodule lung findings were common and included diagnoses such as bronchiectasis, pulmonary fibrosis, carcinoid tumors, and hamartomas. The NLST reported clinically significant abnormalities other than lung cancer in 7.5 percent of LDCT and 2.1 percent of CXR participants.54 Notable infections included tuberculosis and fungal diseases. Other cancers discovered in the course of lung cancer screening included esophageal, thyroid, breast, renal, parathyroid, lymphomas, and metastatic cancers, such as colon and renal cell carcinoma. Some studies described cardiovascular findings such as coronary calcifications or aortic aneurysms. The finding of coronary artery calcification was reported in the Toronto ELCAP study and was approximately 50 percent.86,94 None of the studies reported what evaluations occurred in response to incidental findings.

While we have included this information under the key question dealing with harms for the current evidence review, it is plausible that there may also be some benefit to patients of identifying incidental findings. However, we found no data on either the harms or benefits associated with the incidental findings identified in the studies of screening reported in the current evidence review. Clearly, potential harms and benefits will vary by the finding, the clinical situation, and the patient’s perspective.

Key Question 4. How Effective Is the Treatment of Surgical Resection of Early (Stage IA) Non-Small Cell Lung Cancer?

Summary

No RCTs compared treating stage IA or IB lung cancer with surgical resection with no treatment. Five studies from four cohorts in Japan showed 5-year survival rates for resected pathologic stage IA NSCLC ranging from 71 to 90 percent. Five-year survival among cohorts evaluating pathologic stage IB resected lung cancer ranged from 70 to 74 percent. Data from two large U.S. cohorts on 5-year survival among patients with resected stage IA NSCLC showed 5-year survival rates of 58 to 66 percent for stage IA and 55 percent for stage IB lung cancer resected between 1990 and 2000 (Table 8).

Evidence

No RCTs that assessed the effectiveness of surgical resection for stage IA NSCLC compared with no treatment were identified. Data from the United States on 5-year survival rates among patients with resected stage I NSCLC come from four studies.108,110,112,119 Data from the Surveillance Epidemiology and End Results (SEER) Program on 2,090 NSCLC cases less than 1
cm, resected between 1988 and 2005, and comparing lobectomy with sublobectomy showed 67 percent of patients overall were alive at 37 months.172 A large study (n=10,761) utilizing SEER data of stage IA patients with a median age of 67 years, resected between 1988 and 1997, and a mean followup of 8.3 years, reported overall 5-year survival of 58 percent (63% for women and 53% for men).108 Another study (n=715) of consecutive patients with pathologic stage I NSCLC, a median age of 67 years, and resected between 1990 and 2000 reported 5-year survival rates of 66 percent for stage IA and 55 percent for stage IB NSCLC.110 Finally, the most relevant evidence may come from a study of various treatment strategies evaluated in a cohort of 10,923 Medicare patients age 66 years or older diagnosed with stage IA to IB NSCLC between the years of 2001 and 2007. In this study, 2-year overall mortality was 18 percent among patients treated with lobectomy (n=6,531), 25 percent with sublobar resections, 41 percent with stereotactic ablative radiation, 57 percent with conventional radiation, and 73 percent with observation without treatment. In a multivariable adjusted analysis, observation was associated with a higher risk for lung cancer–specific mortality compared with anatomic surgical resection (HR, 3.01 [95% CI, 2.51 to 3.60]) more than 6 months after treatment.119

Five studies of four cohorts from Japan with survival data on patients with resected stage IA NSCLC were included.111,113,116-118 Generally, these studies included from 510 to 12,760 subjects and reported 5-year survival rates for resected stage IA lung cancer ranging from 71 to 90 percent, with the more recent studies consistently showing approximate survival in the 85 to 90 percent range.111,113,116-118 Because screening often detects stage IB NSCLC, we also report survival rates for resected pathologic stage IB NSCLC. Five-year survival among the cohorts evaluating pathologic stage IB patients ranged from 70 to 74 percent in the more recent studies evaluating survival among these patients.113,118

Several comparative studies evaluated secular trends in survival that support significant improvement in 5-year survival rates over time.116 One large study (n=12,760) of pathologic stage IA patients resected during 2004, 1999, and 1994 reported 5-year survival rates of 89, 83, and 79 percent, respectively. While these numbers likely reflect improved staging technology and surgical technique, they may also show secular changes in patient populations, since widespread lung cancer screening with LDCT was implemented in Japan in the early 2000s.111

Two studies from Europe were also identified. In these studies, 5-year survival for stage IA NSCLC ranged from 64 to 67 percent and survival for stage IB from 42 to 49 percent.109,120 However, these studies reported data collected on patients resected in the 1990s, which is unlikely generalizable to current practice.

While the rates described above from the United States are likely the most generalizable to the United States, it is important to note that these survival rates reflect survival among unselected and presumably symptomatic patients, since, for the most part, there has been little lung cancer screening in the United States during the time periods reviewed. Because of this, the survival rates identified in Japan may represent the “best” estimates for long-term survival from NSCLC under ideal circumstances or are more comparable to a screening population, since screening has been widespread there for many years.
Key Question 5. What Are the Harms Associated With Surgical Resection of Early (Stage IA) Non-Small Cell Lung Cancer?

Summary

None of the RCTs of LDCT screening evaluated the harms associated with resection of screen-detected stage IA NSCLC. Two cohort studies evaluated the harms associated with resection of stage IA NSCLC. One Japanese study reported one postoperative death among 510 individuals undergoing resection between 1992 and 2001. One Italian study conducted between 1991 and 1994 (n=548) with complete resections of stage I NSCLC reported nine postoperative deaths among those resected. Six studies reported harms among large cohorts of individuals undergoing resection but did not specify results specifically for stage IA NSCLC.

Evidence

The NLST reported 60-day mortality after surgery associated with lung cancer resection of 1 percent; however, this included all resections, not just stage IA or IB resections. To more fully address the harm associated with the treatment of early-stage lung cancer, we included several cohort studies of resection. However, of the 13 large studies (n≥500) we reviewed, only two reported on operative complications among patients undergoing surgery for stage IA NSCLC. One study (n=510) reporting outcomes among patients with NSCLC 2 cm or less in diameter undergoing resection in Japan between 1992 and 2001 identified one postoperative death among this cohort. Another trial from Italy (n=548) conducted between 1991 and 1994 and involving the complete resection of patients with stage IA or IB lung cancer reported nine postoperative deaths among those resected.

Six studies reported harms associated with resection in all patients with resected lung cancer, not limited to those with stage IA lung cancer. Among these cohorts, one study reporting on patients resected between 1993 and 1999 in Norway, where resection rates are very low (16%), reported a 30-day postoperative mortality rate of 4.8 percent in the entire cohort. Another study (n=1,465) of consecutive patients of all stages resected in Japan during the years 1985 to 1995 and 1996 to 2002 reported postoperative complication rates of 28 percent in the 1985 to 1995 cohort and 12 percent in the 1996 to 2002 cohort. In-hospital deaths among those resected between 1985 and 1995 were 2 percent and among those resected from 1996 to 2002 were 0.5 percent. More applicable data comes from a large cohort (n=11,663) resected in 2004 in Japan. Among those resected, 4.5 percent had postoperative complications and 0.4 percent operative deaths and 0.4 percent hospital deaths occurred. Notably, these complications were summarized for the entire cohort, including all stages and all degrees of comorbidity and symptomatology. Finally, a study of patients in the United States (n=1,100) undergoing video-assisted thorascopic surgery procedures between 1992 and 2004 reported no intraoperative deaths, nine postoperative deaths (0.8%), and 168 complications, including 56 air leaks, 32 cases of atrial fibrillation, 13 pneumonias, and 13 readmissions. Similar to the large Japanese cohort described above, these data reflect complications and adverse events associated with resection of all stages of lung cancer and symptomatic disease among patients with unknown comorbidities.
Thus, the applicability of these complication rates to screening populations is uncertain.
CHAPTER 4. DISCUSSION

Summary of Review Findings

The personal and public health importance of lung cancer in the United States and worldwide is enormous, and even a small benefit from screening could save many lives. The current evidence review found that in one large (n=53,454) good-quality trial (the NLST) of lung cancer screening with three annual LDCT scans in high-risk individuals ages 55 to 74 years, both lung cancer and all-cause mortality were reduced in the LDCT group compared with those receiving annual CXR screening by 20 and 7 percent, respectively. The absolute lung cancer mortality reduction was 4 per 1,000 people screened. One fair-quality Italian trial conducted among men older than age 60 years suggested reduced lung cancer mortality but did not show statistical significance. Two European trials (one of fair-quality [n=4,104] and one of poor-quality [n=4,099]) in populations of lower risk and younger age showed no benefit of LDCT in reducing lung cancer mortality.

We found no evidence to support the use of CXR for lung cancer screening, although data from the PLCO Screening Trial evaluating CXR screening among smokers suggested there might be benefit among high-risk individuals and possibly among women of high and average risk. If there is any benefit of CXR screening, then the benefits of lung cancer screening with LDCT demonstrated by the NLST may be even greater if applied to an unscreened population. We found no new data on sputum cytology for the current evidence review, although sputum samples were collected in some of the studies. Table 9 summarizes the evidence reviewed in the current review.

Sensitivity of LDCT is relatively high but the specificity varied, with positive predictive values for abnormal LDCT findings ranging from 2.2 to 42 percent, depending on the basis of calculation (by screening round or by including only positive or indeterminate scans). These findings are comparable with other screening modalities, such as breast cancer screening with mammography. The low specificity of screening with LDCT suggests the benefit of screening comes at some cost in terms of positive tests requiring subsequent clinical evaluations. The range of positive or indeterminate findings at baseline screening was high (9% to 51%), and most patients required some type of further evaluation, including clinical examinations, CXR, repeat CT, PET scans, and sometimes biopsy or surgical procedures. However, while lung biopsy is a fairly invasive procedure, the majority of biopsies performed were for cancer, not benign disease, with positive predictive values for invasive procedures or biopsy ranging from 50 to 92 percent. This contrasts with the high number of false-positive examinations requiring further evaluation with imaging or clinical/imaging followup, which were predominantly done for benign disease. Screening with LDCT did not seem to reduce overall quality of life, but was associated with short-term increased worry and distress compared with baseline for those with indeterminate results and decreased distress for those with negative screening results. Smoking cessation rates were not affected by screening in seven included studies, although there was a suggestion of reduced smoking among individuals with abnormal screening LDCT scans compared with those with negative LDCT scans. Finally, LDCT detected many incidental findings that were reported in variable ways in the included studies. The most commonly reported findings were emphysema and coronary artery calcifications.
While we found no trials evaluating the effect of surgical resection of early-stage lung cancer on mortality, this treatment is universally recommended and the benefit of this approach can be inferred given the positive results shown in the NLST of screening and early treatment of screen-detected disease. In fact, the NLST results may be the most compelling data to date that surgical resection of NSCLC improves survival, given the absence of RCTs on this topic. These findings were similar to the results of previous reviews. In a recent review conducted on behalf of the ACCP, the authors found no evidence from RCTs on the effectiveness of surgical resection for early-stage disease. Finally, a Cochrane review of treatment for early-stage NSCLC also found no data from RCTs on the effectiveness of surgical resection of NSCLC. Despite this lack of evidence, surgical resection of stage I lung cancer has a 1A recommendation by the ACCP and is recommended by the NCCN. The strength of these recommendations is based on expected NSCLC growth rates, detailed information from observational studies that show clear differences in early- versus late-stage mortality, and clinical experience. For patients with early-stage NSCLC who can tolerate its adverse effects, surgical resection is universally felt to be beneficial. It is important to note that prior research evaluating the outcomes of lung cancer treatment and resection show that the best patient outcomes occur when surgery is performed by experienced surgeons in high-volume centers. The NCCN recommends that patients with clinical stage I and II NSCLC be evaluated by a thoracic surgical oncologist whose practice prominently focuses on lung cancer, even if patients are being considered for nonsurgical therapies such as percutaneous ablation or stereotactic body radiation therapy.

We evaluated what might account for different findings in the four trials, with the NLST showing a benefit of screening and the three European studies (MILD, DANTE, and DLCST) not showing benefit. The European studies were small, with sample sizes ranging from 2,472 to 5,861 (compared with 53,454 in NLST), and were inadequately powered to detect benefit outcomes such as lung cancer mortality. The European trials also had shorter followup durations ranging from 3 to 5 years (compared with 6.5 years in NLST), which would impact the power of the studies to show a benefit.

A subtle but important issue in all three European studies is the difference in duration of followup in the LDCT groups compared with the nonLDCT groups. In the MILD trial, this results in a significant difference in risk of lung cancer, lung cancer mortality, and all-cause mortality when true followup time is accounted for in the rate denominators then when a median duration of followup is used for calculating incidence/mortality rates. In the MILD trial, the average followup was 53 months for both groups. However, actual followup duration was 56 months in the LDCT group compared with 45 months in the control group. Thus, it is not surprising there were more lung cancer and other deaths in an older population with nearly an extra year of followup. Similarly, when we adjusted for the true denominator of followup in both the LDCT and control groups in the DANTE trial, rather than a neutral effect on lung cancer mortality, the findings suggested a benefit of screening, although it was not statistically significant. Finally, the DLCST authors note that followup of the control group was less complete than for intervention patients (the difference was not reported), which could bias the study against showing a benefit of LDCT screening as well.
Another consideration when comparing the results of studies either showing or suggesting reduced lung cancer mortality (NLST and DANTE) with those showing no benefit or harm is that the populations screened in the NLST and DANTE trial were older and had more smoking exposure, and thus were at significantly higher risk of lung cancer compared with the DLCST and MILD populations. To better understand this, we compared lung cancer incidence and mortality rates among the control groups in each of the main trials. Notably, lung cancer incidence rates in the NLST and DANTE trial are higher than in the DLCST and MILD studies (Table 3). Similarly, the rate of lung cancer mortality is nearly 5-fold higher in the DANTE trial and 3-fold higher in the NLST when compared with either the MILD study or DLCST. All-cause mortality among the control groups in the NLST and DANTE trial was nearly equal and approximately 4-fold higher than the all-cause mortality shown in the DLCST and MILD study. These data indicate that different risk groups were enrolled in these four trials and suggest, but do not prove, that LDCT screening might be more beneficial in higher-risk populations similar to the NLST participants. This has been suggested and modeled in a recent paper where high-risk participants in the NLST were contrasted with the minimally eligible participants. Among high-risk participants, the NNS to save one life from lung cancer over 6 years (3 years of annual screening) was 82 compared with 3,180 for the minimally eligible NLST participant.

Finally, for many of the reasons noted in the Results section, there is reason to have great concern about the randomization of the MILD trial, which impacts the evaluation of its validity. There are important differences in the control and LDCT groups that correlate with each other and suggest systematic differences in the groups randomized to LDCT compared with the control group. This is further suggested by the great differential in followup and the authors’ comments suggesting that the control group may have been added at a later time.

Data from other work has described the effect of “sticky diagnosis” bias, which may result in patients with a history of malignancy erroneously being labeled as dying of that malignancy when cause of death is uncertain. This bias may differentially impact screened groups since they typically have more diagnoses of cancer given during a screening trial because of lead time and some degree of overdiagnosis. This is especially true for patients diagnosed with adenocarcinoma, and was demonstrated in the Mayo Lung Project CXR screening trial. Thus, patients diagnosed with lung cancer in the intervention group may be more likely to be coded as dying from lung cancer than individuals in the control group, especially if cause of death is not reviewed blind to intervention or control status or prior diagnoses and in the setting of shorter durations of followup. In addition, all three European studies that showed no benefit or suggested harm from screening involved some degree of intervention in the usual care group (such as clinical evaluation or PFT). Finally, the surgical/medical care of lung cancer likely differs between Europe and the United States.

Differences in study results may also be related to differences in the LDCT method used. For example, in the DANTE trial, 5-mm single-slice spiral CT was used, which might impact the radiographic resolution of the images. In addition, all participants in the DANTE trial had CXR as well as sputum cytology as part of the baseline evaluation, which would effectively reduce the power to detect a difference associated with LDCT, since nine patients in the control group and 16 patients in the LDCT group were diagnosed with lung cancer at baseline with CXR and sputum cytology. This difference in cancers diagnosed in the two groups at baseline also raises
the issue of possible inadequate randomization or sample size, since the baseline risk of cancer diagnosed by either sputum cytology or CXR is nearly two-fold higher in the LDCT group. A feature that differs among the European trials is that these studies tend to have higher positive predictive values associated with abnormal studies. High positive predictive values limit followup and worry among patients, but may also reflect a loss in sensitivity (or propensity for further evaluation) that results in different patient outcomes.

An important and controversial issue in lung cancer screening is the question of overdiagnosis and consequent overtreatment. The relatively high prevalence of unrecognized lung cancer in several studies suggests there is a significant preclinical pool of lung cancer in high-risk populations. Whether all of these tumors would eventually present clinically is uncertain. In addition, there currently is no way to tell which lung cancer has lethal potential and which does not, although LDCT VDT may prove helpful in the future. Thus, all patients diagnosed with lung cancer are typically treated, resulting in harm to patients with non-lethal lung cancer or those with tumors that might naturally regress.

Overdiagnosis is supported by data from the Mayo Lung Project study of CXR screening which, after 20 years of followup, still showed more (585 vs. 500) lung cancer diagnosed in individuals randomized to intense CXR screening compared with the control group. Data from this study also showed increased rates of early tumors in the intensely screened group compared with the control group, without a change in numbers of advanced tumors or subsequent mortality rates, suggesting diagnosis of a pool of indolent tumors. An intriguing finding in the Mayo Lung Project is that in the 16 years after screening ended, there were 39 more lung cancers diagnosed in the intervention group (379 vs. 340), which is difficult to explain. In contrast, the PLCO Screening Trial of CXR screening did not identify significantly more lung cancer in the screened group than in the control group in the general population or in the high-risk smoking population over 6 years of followup (808 vs. 790), although there were 76 more lung cancers in the CXR group after 13 years of followup, approximately 9 years after screening ended (1,696 vs. 1,620). While the NLST identified more lung cancer in the LDCT group (1,040 vs. 941), this finding is within the context of results that showed a 20 percent reduction in lung cancer mortality and a 6.7 percent reduction in all-cause mortality, suggesting that even with overdiagnosis, there is benefit to screening that outweighs this potential harm. Other data that supports overdiagnosis comes from the DLCST, which identified more early-stage lung cancers in the LDCT group than in the control group, but no difference in advanced-stage lung cancer between the groups. However, this may relate to shorter duration of followup and less up to date information about lung cancer in the control population. Data from the MILD trial that might support overdiagnosis come from a comparison of the LDCT biennial and annual screened groups. In contrast to many LDCT studies, which have tended to show a preponderance of adenocarcinomas diagnosed in participants undergoing LDCT, the MILD trial showed a 10-fold increase in squamous cell cancers among those who were annually screened, which may suggest there is some degree of overdiagnosis of squamous cell cancer as well. However, given concerns about this study’s randomization, these findings must be interpreted cautiously.

Arguments against an important role for overdiagnosis in lung cancer come from autopsy and clinical studies. One study of 15,812 necropsies conducted between the years 1953 and 1982 identified unsuspected “surprise” lung cancer in 68 patients (0.4%) who had died of a multitude
of causes, suggesting a relatively low rate of clinically unrecognized lung cancer. However, autopsy may underestimate rates of lung cancer when compared with LDCT, since the lungs are not always thinly sectioned. Moreover, whether autopsy data are generalizable to living populations is questionable, particularly given selection biases for autopsy. Other data arguing against overdiagnosis come from studies of patients involved in screening programs who were diagnosed with stage I NSCLC and not treated for variable reasons. In one study of 45 screen-detected but untreated stage I NSCLC patients, only two patients survived 5 years.

A recent study evaluating the comparative effectiveness of five treatment strategies for stage 1A and 1B NSCLC indicates that among individuals age 66 years and older who were untreated, 30-day mortality was 8.6 percent. Among those untreated, 6-month mortality was 32.8 percent and 2-year mortality was 73.4 percent overall; lung cancer specific mortality at 4 years of followup was 95.4 percent. These data do not support a large pool of indolent lung cancer among patients with clinically-detected lung cancer, which likely differs from screen-detected populations.

Overdiagnosis in lung cancer almost certainly exists but its magnitude is unknown. The optimal followup time to calculate overdiagnosis from LDCT is not known but theoretically is the lead-time of the slowest-growing cancers, though it may be shorter in practice because of competing mortality. Currently, the best way to measure the magnitude of overdiagnosis caused by LDCT will be with continued followup of lung cancer incidence in the NLST (if the participants choose not to continue screening).

One of the most difficult challenges of LDCT screening is the high false-positive rate that results in downstream evaluations, which are associated with cost, anxiety, and risk. Reducing false-positive rates without reducing sensitivity and effectiveness will be one of the major challenges associated with CT screening and will require careful study of current protocols and guidelines. Data from the NELSON trial suggest that positive results requiring followup can be decreased significantly by following indeterminate nodules for VDT. However, what is not yet known from the NELSON trial is whether this protocol will show the same mortality reduction as in the NLST. Clarifying parameters for indeterminate and positive LDCT screens involves a tradeoff between sensitivity and specificity that will require the best judgment of pulmonologists and radiologists and careful study of protocols that yield the highest sensitivity and specificity, since this will greatly impact the cost, risks, and effectiveness of LDCT screening. Technologic approaches to the problem of false-positive tests may also be on the horizon. Notably, in a recent surgical series, resection of benign nodules occurred in 50 to 86 percent of cases, highlighting the need for better discrimination of lung cancer nodules from benign nodules preoperatively in all domains. VDT, as well as risk prediction models, may independently, or in combination with biomarkers, improve lung cancer prediction and reduce followup imaging and procedures for people with positive scans, in both screening and clinical settings.

False-positive rates also seem to vary by geographic region, with higher rates in the Midwest that are thought to be related to increased rates of granulomatous diseases. One author also notes that rates of identification of noncalcified nodules is correlated with CT collimation. A Canadian study showed that the number of participants with one or more nodules increased from 36 to 60 percent when scan thickness was decreased from 7 to 1.25 mm.
Although the false-positive rate was high in the studies included in this review, false-positive results from lung cancer screening may have a different effect on patients than false-positive results associated with other types of cancer screening tests. Patients who smoke potentially have some control over their subsequent risk and may be able to more effectively modify their high-risk behavior. Data from our review of smoking cessation associated with positive or indeterminate lung cancer screening results showed mixed results, with some studies suggesting or showing a trend that patients with abnormal results reduced smoking or more frequently remained abstinent.62,70,106,107

Radiation exposure is a direct harm of lung cancer screening. It is widely accepted that medical imaging radiation exposure is associated with a real and measurable future risk of cancer.141 Radiation-associated cancer risk increases with younger age at the time of exposure and cumulative dose, and there may be interaction with other lung cancer risks, such as smoking.142 The effective dose from one LDCT scan averaged 1.6 mSv in the NLST and varied by a factor of two over the varying number of detectors and manufacturers used.143 In addition, as doses are adjusted for body weight, the effective dose can further increase by a factor of two.66 LDCT on a modern 16+ MDCT can have a dose as low as 0.8 mSv. In comparison, a standard diagnostic CXR is 0.02 mSv. Given the high frequency of positive LDCT examinations in the trials to date, it is important to note there is also radiation exposure associated with followup imaging of abnormal LDCT screens. These procedures include diagnostic chest CT with an effective radiation dose of 8 mSv and PET/CT with radiation doses ranging from 7 to 14 mSv.

Estimates of cancer risk associated with medical radiation are based on extrapolations and models derived from observations in atomic bomb survivors and occupational exposures.144,145 In one modeling study146 using a LDCT dose of 5.2 mGy (approximately 5.2 mSv) for annual screening from ages 50 to 75 years, the model suggested that the lifetime risk of lung cancer in women would increase by 5 percent and in men by 1.5 percent. Chest radiation would also likely increase the risk of breast cancer among women given prior estimates for the radiation associated with mammography, as well as from childhood radiation exposures.146 However, data on radiation and breast cancer development suggest most of the harm occurs in women sustaining radiation at ages younger than 30 years, significantly younger than the current age group in which lung cancer screening is being evaluated and considered. Notably, with decreasing LDCT radiation dose and frequency, the risks of subsequent lung cancer are proportionally reduced. This highlights the importance of radiation dose, screening interval and duration, and age at onset of screening in lung cancer screening programs and investigation.

Limitations

This review has several limitations. Some of these are discussed above and relate to limitations of the studies reviewed for this report. It could be argued that the NLST results were obtained in volunteers at mostly large academic centers and that the results are not generalizable to most people who might choose to be screened. However, the large size of this trial and its conduct at several centers in the United States, as well as involvement of community physicians and health care providers, improve the odds that these results are generalizable to a community population. The NLST participants were younger, better educated, and less likely to be current smokers than
the general population in the United States that would be eligible for LDCT screening by the NLST criteria. However, this difference is likely more important to consider if LDCT screening is implemented rather than as a limit to the validity of the NLST results. It is much less likely that the European studies would be generalizable to the United States given their very small size and different clinical practices.

The previous evidence review identified a paucity of screening studies among women and found some evidence to suggest that lung cancer screening might perform differently among women. Unfortunately, in spite of the fact that lung cancer is the leading cause of cancer-related death among women, the current evidence review found very little new information in women. There was a suggestion in the PLCO Screening Trial of possible benefit of CXR screening, but the findings were not statistically significant. Hopefully, some of the trials currently underway will report data separately for women. This is especially important in the NLST, given the high number of participants and the statistical chance of identifying benefit if it exists. There are biological reasons to think that screening among women may be associated with different effectiveness, including the propensity of women to develop adenocarcinomas, which are often more peripheral and may be amenable to limited resection. Similarly, the current evidence review identified no studies of screening that evaluated benefits or harms in different racial and ethnic groups.

The rates of biopsy-associated complications were rarely described in the studies reviewed. In addition, while we attempted to evaluate the benefit and harm associated with the treatment of early-stage lung cancer, we found no RCTs that had evaluated surgical resection versus observation. The harms and benefits of surgical resection of lung cancer reported in this review are derived from large series of treatment in unselected symptomatic patients with stage I NSCLC who were treated surgically. Almost certainly, the harms would be higher in such a group and the benefits likely differ as well, making generalizing these results to a screening population problematic.

We excluded nonEnglish language articles, which could result in language bias, though we identified no nonEnglish language studies that would have met inclusion criteria. We did not search for studies published only as abstracts and could not formally assess for publication bias with graphical or statistical methods because of small numbers of studies for each key question and differences in study design, populations, and outcomes assessed. We found few or no randomized trials for a number of key questions. We therefore included nonrandomized trials, as well as observational studies (for harms), which are more susceptible to bias and confounding than well-conducted randomized trials.

Emerging Issues and Future Research

Over the next several years, the large NELSON trial will be publishing information on the benefits and harms of LDCT screening. In addition, longer followup of the smaller trials that will contribute to the NELSON trial should be available. Finally, more analyses of the NLST will be forthcoming and help define whether there are subgroups that might disproportionately benefit or be harmed with LDCT screening. In addition, new studies of risk modeling which could be
applied to currently screened groups may facilitate identification of patients at higher risk who might benefit differentially from screening with LDCT.40,147

At this time in the United States, smoking occurs disproportionately in more disadvantaged groups as measured by socioeconomic status and/or educational level.60 In addition, there is some evidence that individuals of disadvantaged socioeconomic and insurance status have increased lung cancer incidence as well.19,33,34 While it is not clear how much these associations are mediated by smoking behaviors, these findings will have important resource allocation and financial implications if lung cancer screening is widely adopted. It is important to continue to evaluate the psychosocial consequences in patients who undergo screening. As noted, patients in trials self-select to undergo screening and may differ in their psychological responses to screening and abnormal or normal results. If screening is implemented, it will be imperative that these issues be studied carefully, especially the impact on smoking behavior. Furthermore, the method and quality of communication between clinicians and patients with nonnegative results in screening trials is likely different than occurs in routine practice.122 All of these factors could influence the occurrence and magnitude of anxiety and distress that patients in the general population might experience. More research among patients in clinical settings is required to better address these concerns.

There is considerable interest in the use of biomarkers to increase the benefits and minimize the harms of lung cancer screening. The goal of this research is to focus LDCT efforts among individuals at highest risk of disease, provide more accurate discrimination between benign and malignant pulmonary nodules, and to find early indicators of aggressive disease. Many studies have examined the role of biomarkers in these settings. It is beyond the scope of our review to describe all of the potential biomarkers and analytic techniques currently being evaluated, but some that have been studied include exhaled breath biomarkers, such as volatile organic compounds;148,149 DNA methylation analyses using serum, sputum, or exhaled breath condensate;150,151 circulating serum microRNA;152-157 and protein and proteomic analyses (such as haptoglobin and posttranslational glycan modifications of haptoglobin,158 panel of proteins,159 and proteomic analyses160); autoantibodies for small cell lung cancer;161 and the use of dogs to detect scent changes.162 Of note, the NLST collected multiple biologic specimens during enrollment, though no studies have yet reported results.54

No studies were found that evaluated the efficacy of using these biomarkers as a screening test. One paper describes a series of steps necessary for biomarker development163 that will likely guide the clinical relevance of biomarker development. Currently, many biomarker studies have been cross-sectional and most studied in patients with known lung cancer, so it is not known if these biomarkers are present in detectable quantities prior to the development of symptomatic disease. In the near future, it is unlikely that biomarkers will be directly proven to be efficacious at defining at-risk cohorts to target for screening. They may ultimately prove informative in models to assess the baseline risk of developing lung cancer and the potential benefits of LDCT for specific groups.

Biomarkers will likely be found that help distinguish between benign and malignant nodules, the source of the majority of false-positive LDCT findings. However, experts currently recommend serial followup of nodules with repeat CT scans, even for patients with a relatively low risk of
lung cancer.164 The negative predictive value of these biomarkers will likely need to be very high in order to substantially reduce the number of patients who receive followup imaging or the number of scans these patients receive.

Conclusions

The current evidence review found LDCT screening for lung cancer reduced lung cancer mortality by 20 percent and all-cause mortality by nearly 7 percent in one very large, good-quality study conducted in the United States. The NNS to prevent one lung cancer death in this trial was reported as 320 and the NNS to prevent one death overall was calculated to be 219. This compares with a number needed to invite to screen to prevent one breast cancer death of 1,905 in mammography trials following women ages 40 to 49 years for 11 to 20 years, 1,339 for women ages 50 to 59 years, and 377 for women ages 60 to 69 years.165 It also compares with a NNS with flexible sigmoidoscopy of 871 to save one life from colon cancer.166 A small Italian study conducted among a population similar to the NLST population suggested benefit but was not statistically significant. A reduction in lung cancer and all-cause mortality was not shown in two small European trials. However, LDCT identified a high number of patients with positive findings that are not due to lung cancer and require further evaluation, which typically involves more radiation exposure and may cause anxiety among those screened in the short-term, as well as significant costs. New data on CXR screening did not show benefit for CXR in reducing lung cancer deaths, although there was a nonstatistical suggestion of benefit among women. The rates of surgical procedures to evaluate positive findings were variable among the studies reviewed, but generally, most patients undergoing biopsy or surgical procedures were diagnosed with lung cancer. Finally, some patients will likely be diagnosed with and treated for lung cancer that would not have impacted their life (overdiagnosis), which is a net harm to the screened patient. The magnitude of this harm is currently not known. We did not find evidence that LDCT screening reduced smoking rates among those screened, but this will be important to vigilantly monitor and study if LDCT screening is broadly implemented, since smoking cessation is by far the most important intervention for reducing lung cancer risk, as well as improving overall health. More work in public health to reduce smoking rates will be the most important approach to reducing morbidity and mortality from lung cancer. However, in the meantime, given the high number of current and former smokers in the population at risk for lung cancer, work on identifying and treating early-stage lung cancer with screening will hopefully clarify the balance of benefits and harms associated with screening.
References

Figure 1. Analytic Framework

Screening

A: Average risk
B: High-risk

Early detection of lung cancer

Treatment

Decreased mortality, morbidity

Harms

1

2

3

4

5
Figure 2. Meta-Analysis of Lung Cancer Incidence

<table>
<thead>
<tr>
<th>Study, year</th>
<th>Sex</th>
<th>F/u (yrs)</th>
<th>In*</th>
<th>Co*</th>
<th>Mean age (yrs) (In vs. Co)</th>
<th>Mean pack-years (In vs. Co)</th>
<th>Screening times (yrs)</th>
<th>RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NLST, 2011**4, 72</td>
<td>59%</td>
<td>6.5</td>
<td>645</td>
<td>572</td>
<td>61.4</td>
<td>56</td>
<td>0, 1, 2</td>
<td>1.13 (1.03 to 1.23)</td>
</tr>
<tr>
<td>DANTE, 2009**51, 61</td>
<td>100%</td>
<td>2.8</td>
<td>1581</td>
<td>1083</td>
<td>64 vs. 65</td>
<td>47.3 vs. 47.2</td>
<td>0, 1, 2, 3, 4</td>
<td>1.46 (0.96 to 2.22)</td>
</tr>
<tr>
<td>DLCST, 2012**22</td>
<td>56%</td>
<td>4.8</td>
<td>706</td>
<td>245</td>
<td>58</td>
<td>36.4 vs. 35.9</td>
<td>0, 1, 2, 3, 4</td>
<td>2.88 (1.85 to 4.49)</td>
</tr>
<tr>
<td>Overall (I-squared = 88.6%, p = 0.000)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.63 (0.95 to 2.80)</td>
</tr>
</tbody>
</table>

*Per 100,000 person-years

Abbreviations: CI = confidence interval; Co = control; DANTE = Detection and Screening of Early Lung Cancer by Novel Imaging Technology and Molecular Essays; DLCST = Danish Lung Cancer Screening Trial; F/u = followup; In = intervention; NLST = National Lung Screening Trial; RR = relative risk; vs. = versus; yrs = years
Figure 3. Meta-Analysis of Lung Cancer Mortality

<table>
<thead>
<tr>
<th>Study, year</th>
<th>Sex</th>
<th>F/u (yrs)</th>
<th>In*</th>
<th>Co*</th>
<th>Mean age (yrs) (In vs. Co)</th>
<th>Mean pack-years (In vs. Co)</th>
<th>Screening times (years)</th>
<th>RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NLST, 2011</td>
<td>59% male</td>
<td>6.5</td>
<td>247</td>
<td>309</td>
<td>61.4</td>
<td>56</td>
<td>0, 1, 2</td>
<td>0.80 (0.73 to 0.93)</td>
</tr>
<tr>
<td>DANTE, 2009</td>
<td>100% male</td>
<td>2.8</td>
<td>527</td>
<td>637</td>
<td>64 vs. 65</td>
<td>47.3 vs. 47.2</td>
<td>0, 1, 2, 3, 4</td>
<td>0.83 (0.45 to 1.54)</td>
</tr>
<tr>
<td>DLCST, 2012</td>
<td>56% male</td>
<td>4.8</td>
<td>154</td>
<td>112</td>
<td>58</td>
<td>36.4 vs. 35.9</td>
<td>0, 1, 2, 3, 4</td>
<td>1.37 (0.63 to 2.97)</td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.81 (0.72 to 0.91)</td>
</tr>
</tbody>
</table>

*Per 100,000 person-years

Abbreviations: CI = confidence interval; Co = control; DANTE = Detection and Screening of Early Lung Cancer by Novel Imaging Technology and Molecular Essays; DLCST = Danish Lung Cancer Screening Trial; F/u = followup; In = intervention; NLST = National Lung Screening Trial; RR = relative risk; vs. = versus; yrs = years
Figure 4. Meta-Analysis of All-Cause Mortality

<table>
<thead>
<tr>
<th>Study, year</th>
<th>Sex</th>
<th>F/u (yrs)</th>
<th>In*</th>
<th>Co*</th>
<th>Mean age (yrs) (In vs. Co)</th>
<th>Mean pack-years (In vs. Co)</th>
<th>Screening times (yrs)</th>
<th>RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NLST, 2011</td>
<td>59% male</td>
<td>6.5</td>
<td>1142</td>
<td>1216</td>
<td>61.4</td>
<td>56</td>
<td>0, 1, 2</td>
<td>0.93 (0.86 to 0.99)</td>
</tr>
<tr>
<td>DANTE, 2009</td>
<td>100% male</td>
<td>2.8</td>
<td>1212</td>
<td>1433</td>
<td>64 vs. 65</td>
<td>47.3 vs. 47.2</td>
<td>0, 1, 2, 3, 4</td>
<td>0.85 (0.56 to 1.27)</td>
</tr>
<tr>
<td>DLCST, 2012</td>
<td>56% male</td>
<td>4.8</td>
<td>625</td>
<td>429</td>
<td>58</td>
<td>36.4 vs. 35.9</td>
<td>0, 1, 2, 3, 4</td>
<td>1.46 (0.99 to 2.15)</td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.02 (0.78 to 1.33)</td>
</tr>
</tbody>
</table>

*Per 100,000 person-years

Abbreviations: CI = confidence interval; Co = control; DANTE = Detection and Screening of Early Lung Cancer by Novel Imaging Technology and Molecular Essays; DLCST = Danish Lung Cancer Screening Trial; F/u = followup; In = intervention; NLST = National Lung Screening Trial; RR = relative risk; vs. = versus; yrs = years
Table 1. Recommendations of Professional Organizations

<table>
<thead>
<tr>
<th>Organization, year</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Cancer Society, 2012<sup>43</sup></td>
<td>The ACS recommends clinicians discuss screening for lung cancer with high-risk patients in relatively good health who meet the NLST criteria (ages 55 to 74 years with ≥30 pack-year smoking history, currently smoke, or have quit ≤15 years ago). Discussion of screening should include the benefits, uncertainties, and harms. The ACS recommends against the use of CXR and strongly suggests all adults undergoing screening enter an organized screening program with experience in LDCT.</td>
</tr>
<tr>
<td>American Association for Thoracic Surgery<sup>42</sup></td>
<td>The Lung Cancer Screening and Surveillance Task Force recommends surveillance with LDCT and annual lung cancer screening for current and former smokers ages 55 to 79 years with a 30 pack-year history of smoking. It also recommends annual screening for long-term lung cancer survivors ages 55 to 79 years. Annual screening should begin at age 50 years for patients with a 20 pack-year history of smoking and additional comorbidity that produces a cumulative risk of developing lung cancer of at least 5% over the next 5 years.</td>
</tr>
<tr>
<td>American College of Chest Physicians, American Society of Clinical Oncology, American Thoracic Society<sup>4b</sup></td>
<td>The collaborative work of these organizations recommend lung cancer screening, modeled closely on the NLST, using a LDCT program for individuals ages 55 to 74 years with a 30 pack-year history of cigarette smoking and the ability to partake in organized programs of screening.</td>
</tr>
<tr>
<td>American Lung Association, 2012<sup>41</sup></td>
<td>Recommends LDCT for patients who meet the NLST criteria and recommends against CXR as a method for lung cancer screening.</td>
</tr>
<tr>
<td>National Comprehensive Cancer Network Guidelines, 2012<sup>22</sup></td>
<td>The panel recommends LDCT screening for select patients at high risk of lung cancer based on the NLST results, nonrandomized studies, and observational data. High-risk individuals are defined as: age 55 to 74 years; ≥30 pack-year smoking history; and if they are a former smoker, they have quit ≤15 years ago OR age ≥50 years; ≥20 pack-year smoking history, and one additional risk factor. Moderate-risk (age ≥50 years and ≥20 pack-year history of smoking tobacco or secondhand smoke exposure, but no additional lung cancer risk factors) and low-risk (age <50 years and/or smoking history <20 pack-years) individuals are not recommended for lung cancer screening.</td>
</tr>
</tbody>
</table>

Abbreviations: ACS = American Cancer Society; CXR = chest x-ray; LDCT = low-dose computed tomography; NLST = National Lung Screening Trial
<table>
<thead>
<tr>
<th>Study, recruitment years</th>
<th>Population</th>
<th>Baseline smoking status (intervention vs. control)</th>
<th>Screening strategy</th>
<th>Total followup</th>
<th>Followup after screening ended</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDCT vs. CXR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLST<sup>65, 66</sup></td>
<td>N=26,722 vs. 26,732 Ages 55–74 years 59% male</td>
<td>Current: 48% (n=12,862) vs. 48% (12,900) Former: 52% (n=13,860) vs. 52% (n=13,832) Mean pack-years: 56</td>
<td>3</td>
<td>0, 1, 2</td>
<td>Median: 6.5 years Longest: 7.4 years NR but presumably 4.5 years</td>
</tr>
<tr>
<td>LSS<sup>67, 68</sup></td>
<td>N=1660 vs. 1658 Ages 55–74 years 59% male</td>
<td>Current: 58% (n=961) vs. 57% (n=947) Former: 42% (n=699) vs. 43% (n=711) Mean pack-years: 54</td>
<td>2</td>
<td>0, 1</td>
<td>NR but approximately 12–24 months None</td>
</tr>
<tr>
<td>LDCT vs. no LDCT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DANTE<sup>51, 61</sup></td>
<td>N=1276 vs. 1196 Ages 60–74 years 100% male</td>
<td>Current: 56% (n=714) vs. 57% (n=681) Former: NR Mean pack-years: 47.3 vs. 47.2</td>
<td>5</td>
<td>0, 1, 2, 3, 4</td>
<td>Median: 33.7 months Controls: 31.5 months LDCT: 35.7 months Unknown (final results pending)</td>
</tr>
<tr>
<td>DLCST<sup>52, 62, 70</sup></td>
<td>N=2052 vs. 2052 Ages 50–70 years 55% male</td>
<td>Current: 75% (n=1545) vs. 77% (n=1579) Former: 25% (n=507) vs. 23% (n=473) Mean pack-years: 36.4 vs. 35.9</td>
<td>5</td>
<td>0, 1, 2, 3, 4</td>
<td>Median person-years: 4.8 NR</td>
</tr>
<tr>
<td>MILD<sup>53</sup></td>
<td>N=2376 (1190 annual, 1186 biennial) vs. 1723 Ages ≥49 years 66% male</td>
<td>Current: 68% (annual) vs. 68% (biennial) vs. 90% (control) Former: 31% (annual) vs. 32% (biennial) vs. 10% (control) Mean pack-years: 39 vs. 39 vs. 38</td>
<td>Median number of CT scans (annual vs. biennial): 5 vs. 3 Every 12 months (annual vs. every 24 months (biennial))</td>
<td>Median: 4.4 years (maximum 6 years in both groups) Controls: 56 months LDCT: 45 months Recruitment ended January 2011; followup until November 2011</td>
<td></td>
</tr>
<tr>
<td>NELSON<sup>55, 64, 67, 69, 71, 77, 80</sup></td>
<td>N=7915 vs. 7907 Ages 50–75 years 84% male</td>
<td>Current: NR Former: NR Mean pack-years: NR, but had to have 15 cigarettes/day for >25 years, or >10 cigarettes/day for >30 years smoking history, and if former smoker, quit ≥10 years ago for inclusion</td>
<td>3</td>
<td>0, 1, 3</td>
<td>2 years 2 years</td>
</tr>
<tr>
<td>ITALUNG<sup>57, 61, 82</sup></td>
<td>N=1406 vs. 1593 Ages 55–69 years 65% male</td>
<td>Current: 65% (n=2078) Former: NR Median pack-years: 39</td>
<td>4</td>
<td>0, 1, 2, 3</td>
<td>Baseline only NA</td>
</tr>
</tbody>
</table>
Table 2. Summary of Included Randomized, Controlled Trials

<table>
<thead>
<tr>
<th>Study, recruitment years</th>
<th>Population</th>
<th>Baseline smoking status (intervention vs. control)</th>
<th>Screening strategy</th>
<th>Total followup</th>
<th>Followup after screening ended</th>
</tr>
</thead>
<tbody>
<tr>
<td>CXR vs. usual care</td>
<td>N=77,445 vs. 77,456 Ages 55–74 50% male</td>
<td>Current: 10% Former: 42% Never: Approximately 45% Mean pack-years: NR</td>
<td>4 0, 1, 2, 3</td>
<td>Median (mean): 11.9 (11.2) years (range: 10–13 years)</td>
<td>NR</td>
</tr>
</tbody>
</table>

PLCO™ 1993–2001

Abbreviations: CT = computed tomography; CXR = chest x-ray; DANTE = Detection and Screening of Early Lung Cancer by Novel Imaging Technology and Molecular Essays Trial; DLCST = Danish Lung Cancer Screening Trial; LDCT = low-dose computed tomography; LSS = Lung Screening Study; MILD = Multi-centric Italian Lung Detection; NA = not applicable; NELSON = Nederlands-Leuvens Longkanker Screenings Onderzoek; NLST = National Lung Screening Trial; NR = not reported; PLCO = Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial
Table 3. Incidence Rates of Lung Cancer Outcomes

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Incidence</th>
<th></th>
<th>Lung cancer mortality</th>
<th></th>
<th>All-cause mortality</th>
<th></th>
<th>Duration of followup*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>IN</td>
<td>CO</td>
<td>RR (95% CI)</td>
<td>IN</td>
<td>CO</td>
<td>RR (95% CI)</td>
</tr>
<tr>
<td>LDCT vs. CXR</td>
<td></td>
<td></td>
<td>IN</td>
<td>CO</td>
<td></td>
<td>IN</td>
<td>CO</td>
<td></td>
</tr>
<tr>
<td>NLST64, 72</td>
<td>53,454</td>
<td>645</td>
<td>572</td>
<td></td>
<td>1.13 (1.03–1.23)</td>
<td>247</td>
<td>309</td>
<td>0.80 (0.73–0.93)†</td>
</tr>
<tr>
<td>NLST women</td>
<td>41%</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td></td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>LDCT vs. no LDCT</td>
<td></td>
<td></td>
<td>IN</td>
<td>CO</td>
<td></td>
<td>IN</td>
<td>CO</td>
<td></td>
</tr>
<tr>
<td>DANTE</td>
<td>2472</td>
<td>1600</td>
<td>1015</td>
<td></td>
<td>1.14 (0.96–2.22)†</td>
<td>558</td>
<td>597</td>
<td>0.83 (0.45–1.54)†</td>
</tr>
<tr>
<td>DANTE women</td>
<td>0%</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>DLCST</td>
<td>4104</td>
<td>706</td>
<td>245</td>
<td></td>
<td>2.88 (1.85–4.49)†</td>
<td>154</td>
<td>112</td>
<td>1.37 (0.63–2.97)†</td>
</tr>
<tr>
<td>DLCST women</td>
<td>45%</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td></td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>MILD63</td>
<td>4099</td>
<td>457†</td>
<td>311</td>
<td></td>
<td>1.47 (0.82–2.64)†</td>
<td>1.99 (1.16–3.43)†</td>
<td>109‡</td>
<td>216†</td>
</tr>
<tr>
<td>MILD women</td>
<td>34%</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td></td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>CXR vs. usual care</td>
<td></td>
<td></td>
<td>IN</td>
<td>CO</td>
<td></td>
<td>IN</td>
<td>CO</td>
<td></td>
</tr>
<tr>
<td>PLCO69</td>
<td>154,901</td>
<td>200</td>
<td>192</td>
<td></td>
<td>1.05 (0.98–1.12)</td>
<td>140</td>
<td>142</td>
<td>0.99 (0.87–1.22)</td>
</tr>
<tr>
<td>PLCO¶</td>
<td>30,321</td>
<td>606</td>
<td>608</td>
<td></td>
<td>1.00 (0.88–1.13)</td>
<td>361</td>
<td>383</td>
<td>0.94 (0.81–1.10)</td>
</tr>
<tr>
<td>PLCO women</td>
<td>50.5%</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td></td>
<td>NR</td>
<td>NR</td>
<td>0.92 (0.81–1.06)</td>
</tr>
</tbody>
</table>

*Data presented as medians in years.
†Data were calculated.
‡Biennial exam group.
¶Annual exam group.
△NLST-eligible patients only.

Abbreviations: CI = confidence interval; CO = control group; CXR = chest x-ray; DANTE = Detection and Screening of Early Lung Cancer by Novel Imaging Technology and Molecular Essays; DLCST = Danish Lung Cancer Screening Trial; IN = intervention group; LDCT = low-dose computed tomography; MILD = Multi-centric Italian Lung Detection; NA = not applicable; NLST = National Lung Screening Trial; NR = not reported; PLCO = Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial; RR = relative risk.
Table 4. Computed Tomography Parameters

<table>
<thead>
<tr>
<th>Study</th>
<th>kV</th>
<th>mAs</th>
<th>Slice width (mm)</th>
<th>Overlap</th>
<th>Multi/single detector</th>
<th>Estimated dose/study (mSv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randomized, controlled trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLST(^{54, 72})</td>
<td>120–140</td>
<td>40–80</td>
<td>1–2.5</td>
<td>Yes</td>
<td>MDCT</td>
<td>1.5</td>
</tr>
<tr>
<td>LSS(^{55, 73})</td>
<td>120–140</td>
<td>60–120</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>DANTE(^{61, 64})</td>
<td>140</td>
<td>40</td>
<td>5</td>
<td>NR</td>
<td>Both</td>
<td>NR</td>
</tr>
<tr>
<td>MILD(^{65})</td>
<td>120</td>
<td>30</td>
<td>1–5</td>
<td>No</td>
<td>Both</td>
<td>0.7</td>
</tr>
<tr>
<td>NELSON(^{56, 63, 67, 71, 77})</td>
<td>80–90</td>
<td>40–80</td>
<td>1</td>
<td>Yes</td>
<td>MDCT</td>
<td>NR</td>
</tr>
<tr>
<td>DLCST(^{76})</td>
<td>120</td>
<td>40</td>
<td>3 and 1</td>
<td>Yes</td>
<td>16 row MDCT</td>
<td>NR</td>
</tr>
<tr>
<td>Cohort studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada ELCAP(^{96, 94})</td>
<td>120</td>
<td>40–60</td>
<td>1–1.25</td>
<td>Yes</td>
<td>Variable row 4–64</td>
<td>NR</td>
</tr>
<tr>
<td>China ELCAP(^{50})</td>
<td>120</td>
<td>80</td>
<td>5</td>
<td>NR</td>
<td>Both</td>
<td>NR</td>
</tr>
<tr>
<td>COSMOS(^{91, 95})</td>
<td>140</td>
<td>30</td>
<td>2.5</td>
<td>NR</td>
<td>8–16 row MDCT</td>
<td>0.8 men 1.0 women</td>
</tr>
<tr>
<td>Toyoda et al, 2008(^{89})</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Mayo Lung Project(^{97})</td>
<td>120</td>
<td>40</td>
<td>5</td>
<td>NR</td>
<td>4 row MDCT</td>
<td>0.65</td>
</tr>
<tr>
<td>PLuSS(^{97})</td>
<td>140</td>
<td>40–60</td>
<td>2.5</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Tsushima et al, 2008(^{80})</td>
<td>120</td>
<td>25</td>
<td>5</td>
<td>NR</td>
<td>MDCT</td>
<td>NR</td>
</tr>
<tr>
<td>LUSI(^{98})</td>
<td>NR</td>
<td>NR</td>
<td>1</td>
<td>Yes</td>
<td>MDCT</td>
<td>1.62–2</td>
</tr>
</tbody>
</table>

Abbreviations: COSMOS = Continuing Observation of Smoking Subjects; DANTE = Detection and Screening of Early Lung Cancer by Novel Imaging Technology and Molecular Essays; DLCST = Danish Lung Cancer Screening Trial; ELCAP = Early Lung Cancer Action Program; LSS = Lung Screening Study; LUSI = The German Lung Cancer Screening Intervention Trial; MDCT = Multidetector computed tomography; MILD = Multi-centric Italian Lung Detection; NELSON = Nederlands-Leuvens Longkanker Screenings Onderzoek; NLST = National Lung Screening Trial; NR = not reported; PLuSS = Pittsburgh Lung Screening Study
Table 5. Results of Screening Rounds in Randomized, Controlled Trials*

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Round screening</th>
<th>Number screened</th>
<th>Study positives, n (%)</th>
<th>Imaging followup</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>IN</td>
<td>CO</td>
<td>IN</td>
</tr>
<tr>
<td>NLST<sup>44</sup></td>
<td>Baseline</td>
<td>26,722</td>
<td>26,732</td>
<td>7191 (27)<sup>†</sup></td>
</tr>
<tr>
<td></td>
<td>Round 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Round 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cumulative</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Baseline</td>
<td>1660</td>
<td>1658</td>
<td>325 (20)</td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>1629</td>
<td>1648</td>
<td>295 (18)</td>
</tr>
<tr>
<td>LSS<sup>55</sup></td>
<td>Baseline</td>
<td>2052</td>
<td>(2047 had 1st LDCT)</td>
<td>2052</td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>1976</td>
<td>1953</td>
<td>117 (5.9)</td>
</tr>
<tr>
<td></td>
<td>Baseline</td>
<td>7557</td>
<td>NR</td>
<td>1451 (19) indeterminate and 119 (1.6) positive; 196 (2.6) referred for further evaluation</td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>1723</td>
<td>NR</td>
<td>480 (6.6) indeterminate and 90 (1.2) positive; 118 (1.6) referred for further evaluation</td>
</tr>
<tr>
<td>MILD<sup>53</sup></td>
<td>Overall</td>
<td>Biennial 1186</td>
<td>1723</td>
<td>Biennial 158 (13)</td>
</tr>
<tr>
<td></td>
<td>Annual 1190</td>
<td>1593</td>
<td>Annual 177 (15)</td>
<td>NR</td>
</tr>
<tr>
<td>ITALUNG<sup>57</sup></td>
<td>Baseline</td>
<td>1406</td>
<td>1593</td>
<td>426 (30)</td>
</tr>
<tr>
<td>DANTE<sup>51</sup></td>
<td>Overall</td>
<td>1276</td>
<td>1196</td>
<td>351 (28) (226 further evaluation)</td>
</tr>
</tbody>
</table>
Table 5. Results of Screening Rounds in Randomized, Controlled Trials*

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Biopsy‡, n (%)</th>
<th>Surgery‡, n (%)</th>
<th>Bronchoscopy, n (%)</th>
<th>Screen-detected lung cancer, n (%)</th>
<th>Total lung cancer, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IN</td>
<td>CO</td>
<td>IN</td>
<td>CO</td>
<td>IN</td>
</tr>
<tr>
<td>NLST††</td>
<td>1552 (0.6)†</td>
<td>74 (0.3)†</td>
<td>37 (0.1)†</td>
<td>197 (0.7)†</td>
<td>121 (0.5)†</td>
</tr>
<tr>
<td></td>
<td>93 (0.3)†</td>
<td>93 (0.3)†</td>
<td>52 (0.2)†</td>
<td>191 (0.8)†</td>
<td>67 (0.3)†</td>
</tr>
<tr>
<td></td>
<td>322 (1.2)†</td>
<td>322 (1.2)†</td>
<td>172 (0.6)†</td>
<td>713 (2.7)†</td>
<td>239 (0.9)†</td>
</tr>
<tr>
<td>LSS†</td>
<td>63</td>
<td>NR</td>
<td>46 (2.8)</td>
<td>12 (0.7)</td>
<td>29 (1.7)</td>
</tr>
<tr>
<td>LSS†</td>
<td>63</td>
<td>NR</td>
<td>18 (1.1)</td>
<td>19 (1.2)</td>
<td>14 (0.9)</td>
</tr>
<tr>
<td>DLCST††</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>2 (0.1)</td>
<td>NR</td>
<td>18 (0.9)</td>
<td>NR</td>
<td>13 (0.7)</td>
</tr>
<tr>
<td></td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>NELSON††</td>
<td>13 (0.2)</td>
<td>NR</td>
<td>92 (1.2)</td>
<td>NR</td>
<td>98 (1.3)</td>
</tr>
<tr>
<td></td>
<td>3 (0.04)</td>
<td>NR</td>
<td>61 (0.4)</td>
<td>NR</td>
<td>54 (0.7)</td>
</tr>
<tr>
<td>MILD†</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>ITALUNG†</td>
<td>16 (1.1)</td>
<td>FNA</td>
<td>16 (1.1)</td>
<td>NR</td>
<td>20 (1.4)</td>
</tr>
<tr>
<td>DANTE†</td>
<td>NR</td>
<td>NR</td>
<td>96 (7.5) invasive procedures, 46 (3.6) thoracotomy, 20 (1.6) VATS</td>
<td>NR</td>
<td>36 (3.0) any invasive procedure, 20 (1.7) thoracotomy, 6 (0.5) VATS</td>
</tr>
</tbody>
</table>

* Per individual, unless otherwise noted.
†Per test.
‡Per study definition.

Abbreviations: CO = control group; CT = computed tomography; CXR = chest x-ray; DANTE = Detection and Screening of Early Lung Cancer by Novel Imaging Technology and Molecular Essays Trial; DLCST = Danish Lung Cancer Screening Trial; FNA = fine needle aspiration; IN = intervention group; LDCT = low-dose computed tomography; LSS = The Lung Screening Study; MILD = Multi-centric Italian Lung Detection; NELSON = Nederlands-Leuvens Longkanker Screenings Onderzoek; NLST = National Lung Screening Trial; NR = not reported; PET = positron emission tomography; VATS = video-assisted thoracic surgery
Table 6. Results of Screening Rounds in Cohort Studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Round of screening</th>
<th>Number screened</th>
<th>Study positives, n (%)</th>
<th>Repeat CT or PET, n (%)</th>
<th>Biopsy*, n (%)</th>
<th>Surgery*, n (%)</th>
<th>Lung cancer, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cornell ELCAP<sup>93</sup></td>
<td>Baseline Repeat</td>
<td>2968</td>
<td>368/2968 (12%)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>79/2968; 77 screen-detected (2.7)</td>
</tr>
<tr>
<td>China ELCAP<sup>95</sup></td>
<td>Baseline</td>
<td>3582</td>
<td>351/3582 (10%)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>34/3582 (0.95); interval cancers NR</td>
</tr>
<tr>
<td>Canada ELCAP<sup>96</sup></td>
<td>Baseline Repeat</td>
<td>3352</td>
<td>600/3352 (18%)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>44/3352 (1.3)</td>
</tr>
<tr>
<td>COSMOS<sup>97, 98</sup></td>
<td>Baseline Round 1</td>
<td>5201</td>
<td>560/5201 (11%)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>55/5201 (1.0)</td>
</tr>
<tr>
<td>Mayo Lung Project<sup>97</sup></td>
<td>Baseline Repeat (4)</td>
<td>1520</td>
<td>780/1520 (51%)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>31/1520 (2.0)</td>
</tr>
<tr>
<td>Japan Toyoda et al, 2008<sup>99</sup></td>
<td>Overall</td>
<td>4689</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>45/4689 (0.96) - all screen detected</td>
</tr>
<tr>
<td>PLuSS<sup>97</sup></td>
<td>Baseline</td>
<td>3642</td>
<td>1477/3642 (40%)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>80/3642 (2.2); interval cancers NR</td>
</tr>
<tr>
<td>Japan Tsushima et al, 2008<sup>90</sup></td>
<td>Overall</td>
<td>2486</td>
<td>214/2486 (8.6%)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>8/2486 (0.3); all screen-detected</td>
</tr>
<tr>
<td>LUSI<sup>98</sup></td>
<td>Baseline</td>
<td>2029</td>
<td>540/2029 (27%)</td>
<td>NR</td>
<td>31/2029 (1.5)</td>
<td>19/2029 (0.9)</td>
<td>23/2029 (1.1); 22 screen-detected</td>
</tr>
</tbody>
</table>

* Per study definition.

Abbreviations: COSMOS = Continuing Observation of Smoking Subjects; CT = computed tomography; ELCAP = Early Lung Cancer Action Program; HRCT = high-resolution computed tomography; LUSI = The German Lung Cancer Screening Intervention Trial; NR = not reported; PET = positron emission tomography; PLuSS = Pittsburgh Lung Screening Study
Table 7. Smoking Rates

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Quit rates (for baseline smokers)</th>
<th>Relapse rate</th>
<th>Measure for abstinence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randomized, controlled trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| NELSON^a | 1284 | 24 months: CT group: 13% (84/641)*
| | | Control group: 15% (96/643)*
| | | p=0.35 | NR | |
| NELSON^b | 990 | 24 months:
| | | Negative CT group: 8.9% (46/519)*
| | | Indeterminate CT group: 11% (48/419)*
| | | p=0.19 | NR | |
| DLCST^c | 4104 | 12 months: CT group: 11% (174/1545)*
| | | Control group: 10% (165/1579)*
| | | p=0.47 | Former smokers:
| | | CT: 9.3% (47/507)*†
| | | Control: 9.3% (44/473)*† | >4 weeks PPA |
| **Cohorts from randomized, controlled trials** | | | | |
| NLST^c | LSS | NLST: 169
| | | LSS: 144
| | | 1 month: NLST: 6.3% (5/79)*†
| | | LSS: 4.8% (4/83)*† | Former smokers:
| | | NLST: 4.4% (4/90)*†
| | | LSS: 3.3% (2/61)*† | |
| **Cohorts** | | | | |
| ELCAP^d | 2078 | Up to 72 months: 14% (103/730)*‡ | Recent quitters (during study) with followup: 34% (52/155)
| | | 12 months: 14% (129/901) | Recent quitters (<12 months prior to study): 42% (51/121)
| | | Former smokers:
| | | NLST: 4.4% (4/90)*†
| | | LSS: 3.3% (2/61)*† | 30 day PPA |
| Mayo Lung Project^e | 1475 | 12 months: 14% (129/901) | Former smokers: 10% (numerator/denominator NR) | PPA |
| Mayo Lung Project^f | 1520 | 12 months: 14% (129/926)*†
| | | 24 months: 22% (202/926)*†
| | | 36 months: 23% (211/926)*†
| | | Repeat 7 day PPA x 36 months: 9.3% (86/926)*† | Recent quitters (during study)
| | | 12 months: NA
| | | 24 months: 26% (33/129)*†
| | | 36 months: 31% (62/202)*† | Recent quitters (<12 months prior to study)
| | | 12 months: 32% (48/151)*†
| | | 24 months: 26% (40/151)*†
| | | 36 months: 27% (41/151)*† | Former smokers:
| | | 12 months: 2.3% (10/439)*†
| | | 24 months: 2.7% (12/439)*†
| | | 36 months: 3.0% (13/439)*† | 7 day PPA |
| PLuSS^g | 2094 | 12 months: 16% (325/2094) | Recent quitters (during study):
| | | 12 months: 12% (244/2094) | >30 day PPA |
| PALCAD^h | 449 | 24 months: 19% (59/307) | 24 months: 1.6% | PPA |

*Intention-to-treat analysis.
†Calculated.
‡Point abstinent with subsequent followup.

Abbreviations: CT = computed tomography; DLCST = Danish Lung Cancer Screening Trial; ELCAP = Early Lung Cancer Action Program; LSS = Lung Screening Study; NELSON = Nederlands-Leuvens Longkanker Screening Onderzoek; NLST = National Lung Screening Trial; NR = not reported; PALCAD = ProActive Lung Cancer Detection; PLuSS = Pittsburgh Lung Screening Study; PPA = point prevalence abstinence
Table 8. Survival Benefit and Adverse Events After Treatment of Stage I Lung Cancer

<table>
<thead>
<tr>
<th>Author, year Recruitment years</th>
<th>Population</th>
<th>Duration of followup</th>
<th>Stage IA (n)</th>
<th>Stage IB (n)</th>
<th>Surgery</th>
<th>5-year survival</th>
<th>Harms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Christian et al, 2006109 1991–2004</td>
<td>N=1421 NSCLC resection, 548 complete resection stage IA/IB Mean age: 67 years Location: Italy</td>
<td>Median 49 months</td>
<td>250</td>
<td>298</td>
<td>Complete resection</td>
<td>Overall: 57% IA: 67% IB: 49%</td>
<td>9 postoperative deaths</td>
</tr>
<tr>
<td>Goodgame et al, 2008110 1990–2000</td>
<td>N=715 consecutive patients undergoing resection 46% female 45% adenocarcinoma Location: United States Other: pathologic stage IA/IB Median age: 67 years</td>
<td>4.7 years</td>
<td>378</td>
<td>336</td>
<td>Wedge: 34% Lobectomy: 21% Pneumonectomy: 40%</td>
<td>Overall: 61% IA: 66% IB: 55%</td>
<td>NR</td>
</tr>
<tr>
<td>Goya et al, 2005111 1994</td>
<td>N=6644 resected NSCLC 70% male Mean age: 64.5 years Location: Japan</td>
<td>At least 5 years</td>
<td>2423</td>
<td>1542</td>
<td>NR</td>
<td>IA: 80% IB: 60% All stages: Men: 49% Women: 62%</td>
<td>NR</td>
</tr>
<tr>
<td>Kates et al, 2011112 1988–2005</td>
<td>N=2090 resected tumors ≤1 cm Lobectomy vs. sublobectomy Location: United States Other: SEER</td>
<td>37 months</td>
<td>2090</td>
<td>0</td>
<td>1402 lobectomy 688 "limited" resection</td>
<td>64% alive after 37 months Not clear</td>
<td>NR</td>
</tr>
<tr>
<td>Maeda et al, 2010113 1994–2003</td>
<td>N=713 consecutive, 569 stage I 80% adenocarcinoma 46% female Location: Japan</td>
<td>NR</td>
<td>249</td>
<td>320</td>
<td>Wedge: 14% Lobectomy: 86%</td>
<td>85%</td>
<td>NR</td>
</tr>
<tr>
<td>Maeda et al, 2012114 1997–2003</td>
<td>N=4668 all stages resected Location: Japan</td>
<td>Retrospective cohort with followup until March 2010</td>
<td>1487</td>
<td>1214</td>
<td>NR by stage</td>
<td>IA: 42% ASC 89% AC 63% SC IB: 19% ASC 65% AC 47% SC</td>
<td>NR</td>
</tr>
<tr>
<td>Author, year Recruitment years</td>
<td>Population</td>
<td>Duration of followup</td>
<td>Stage IA (n)</td>
<td>Stage IB (n)</td>
<td>Surgery</td>
<td>5-year survival</td>
<td>Harms</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>------------</td>
<td>----------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>---------</td>
<td>----------------</td>
<td>-------</td>
</tr>
<tr>
<td>McKenna et al, 2006†15 1992–2004</td>
<td>N=1100 patients of all stages undergoing VATS Location: NR</td>
<td>NR but data out to 10 years</td>
<td>561</td>
<td>248</td>
<td>VATS lobectomy</td>
<td>NR</td>
<td>Entire cohort: Benign dissection: 53/1100 (4.8%) Lung cancer: 1015/1100 (92%) No intraoperative deaths 9 postoperative deaths (0.8%) 168 had complications: 56 air leak, 32 atrial fibrillation, 13 readmission, 13 pneumonia</td>
</tr>
<tr>
<td>Okada et al, 2004†16 1985–1995 1996–2002</td>
<td>N=1465 consecutive patients, of which 859 stage I Location: Japan Other: NSCLC</td>
<td>103 months early era 41 months later era</td>
<td>523</td>
<td>326</td>
<td>NR by stage</td>
<td>IA: 71% early era 90% later era IB: 63% early era 75% later era</td>
<td>Entire cohort: 6.3% operative deaths Postoperative complications: Early era: 28% Late era: 12% In-hospital deaths: Early era: 2% Late era: 0.5%</td>
</tr>
<tr>
<td>Okada et al, 2006†17 1992–2001</td>
<td>N=510, ≤2 cm undergoing sublobar, lobar, or wedge resection Location: Japan Other: Peripheral NSCLC</td>
<td>72 months</td>
<td>510</td>
<td>0</td>
<td>Wedge: 30 Segmentectomy: 230 Lobectomy: 260</td>
<td>90% 89%</td>
<td>1 operative death (29 days postoperative MI)</td>
</tr>
</tbody>
</table>
Table 8. Survival Benefit and Adverse Events After Treatment of Stage I Lung Cancer

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Recruitment years</th>
<th>Population</th>
<th>Duration of followup</th>
<th>Stage IA (n)</th>
<th>Stage IB (n)</th>
<th>Surgery</th>
<th>5-year survival</th>
<th>Harms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strand et al, 2006</td>
<td>1993–1999</td>
<td>N=3211 resected 2061 men, 1150 women (resection rate in country 16%, of which 1375=stage I)</td>
<td>NR</td>
<td>559</td>
<td>816</td>
<td>NR by stage</td>
<td>IA: 64% IB: 42%</td>
<td>Entire cohort 30-day mortality: 4.8%</td>
</tr>
</tbody>
</table>

Abbreviations: AC = adenocarcinoma; ASC = adenosquamous carcinoma; MI = myocardial infarction; NR = not reported; NSCLC = non-small cell lung cancer; SC = squamous cell carcinoma; SEER = Surveillance Epidemiology and End Results; VATS = video-assisted thoracic surgery
Key Question 1. How effective is screening for lung cancer in reducing mortality and morbidity?

<table>
<thead>
<tr>
<th>Number of studies</th>
<th>Design</th>
<th>Limitations</th>
<th>Consistency</th>
<th>Applicability</th>
<th>Overall quality</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 studies (7 publications)</td>
<td>RCTs</td>
<td>3 RCTs evaluating LDCT had short followup and were underpowered</td>
<td>Low</td>
<td>High</td>
<td>Fair</td>
<td>1 good-quality trial (n=53,454) of high-risk participants with good generalizability showed that LDCT compared with CXR conducted over 3 screens reduced lung cancer mortality by 20% and all-cause mortality by 6.7%. 3 smaller (n=2472, 4099, and 4104) European trials of fair- and poor-quality included high-risk participants and showed no benefit associated with LDCT screening compared with no LDCT screening. Meta-analysis of 3 fair- or good-quality trials showed RR of lung cancer mortality of 0.81 (95% CI, 0.72–0.91) and of all-cause mortality of 1.02 (95% CI, 0.78–1.35). 2 trials of CXR screening compared with no screening (1 in the general population and 1 in high-risk individuals) showed no benefit associated with CXR screening. 1 study reported findings on screening in women and did not show a significant reduction in lung cancer mortality associated with CXR screening. No trials reported data on lung cancer screening in different racial or ethnic populations.</td>
</tr>
</tbody>
</table>

Key Question 2. What are the test characteristics (sensitivity, specificity, predictive value) of screening tests for lung cancer?

<table>
<thead>
<tr>
<th>Number of studies</th>
<th>Design</th>
<th>Limitations</th>
<th>Consistency</th>
<th>Applicability</th>
<th>Overall quality</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 studies (24 publications)</td>
<td>RCTs Cohort</td>
<td>Variable methods of determining sensitivity and specificity</td>
<td>High</td>
<td>High</td>
<td>Fair</td>
<td>Sensitivity of LDCT was reported in 1 trial and 5 cohort studies and ranged from 80%–100%. Specificity of LDCT was reported in 2 RCTs and 5 cohort studies and ranged from 28%–100%. The calculated positive predictive value for an abnormal (positive or indeterminate) LDCT scan predicting lung cancer ranged from 2.2%–42%. The sensitivity of CXR for lung cancer was reported in the prior review as 25% when compared with LDCT; specificity was not evaluated. No studies reported test parameters for sputum cytology.</td>
</tr>
</tbody>
</table>

Key Question 3. What are the harms associated with lung cancer screening and are there ways to modify harms (e.g., unnecessary biopsy, radiation exposure, overdiagnosis, and psychosocial harms)?

<table>
<thead>
<tr>
<th>Number of studies</th>
<th>Design</th>
<th>Limitations</th>
<th>Consistency</th>
<th>Applicability</th>
<th>Overall quality</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 studies (32 publications)</td>
<td>RCTs Cohort</td>
<td>Harms variably reported among the studies</td>
<td>Fair</td>
<td>High</td>
<td>Fair</td>
<td>Radiation: 2 RCTs and 2 cohort studies reported radiation associated with 1 LDCT scan ranged from 0.6 mSv–1.5 mSv. 1 study reported cumulative radiation exposure associated with its screening program estimated at 6 mSv–7 mSv. False-positive examinations and followup evaluations: Positive examinations at baseline screen ranged from 9.2%–51% (of participants) with calculated positive predictive values for abnormal scans ranging from 2.2%–36%; most were resolved with further imaging. Positive examinations were lower in subsequent screens with positive predictive values for abnormal scans predicting lung cancer of 4%–42%; most were resolved with further imaging. Positive predictive values for abnormal LDCT scans with recommendations for biopsy ranged from 50%–92%. False reassurance: Sensitivity of LDCT ranged from 80%–100%, implying a false-negative rate of 0%–20%. The harms of false reassurance were not evaluated in any study. Overdiagnosis: Overdiagnosis was not formally reported in any study. It was suggested in 1 trial of LDCT compared with no LDCT that showed an excess of 119 lung cancers among approximately 26,000 participants after 6.5 years of followup. 3 RCTs with limited followup reported more early-stage lung cancer in LDCT screened groups than among controls but not a smaller number of advanced lung cancer. 1 older trial of CXR screening of approximately 9000 high-risk participants reported that an excess of lung cancers diagnosed in the screened group persisted after 20 years of followup.</td>
</tr>
</tbody>
</table>
Table 9. Summary of Evidence

<table>
<thead>
<tr>
<th>Number of studies</th>
<th>Design</th>
<th>Limitations</th>
<th>Consistency</th>
<th>Applicability</th>
<th>Overall quality</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 trial of CXR screening compared with no screening in the general population (n=155,000) showed 18 excess lung cancers in the screened group after 6 years of followup and 76 excess lung cancers after 13 years of followup (RR, 1.05 [95% CI, 0.98–1.12]); data from the same trial evaluating overdiagnosis among a high-risk population showed a cumulative incidence of lung cancer of 606/100,000 py in the CXR group and 608/100,000 py in the usual care group after 6 years of followup (RR, 1.00 [95% CI, 0.88–1.13]).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psychosocial consequences:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 studies showed that LDCT screening did not significantly impact overall health-related quality of life. Most studies reported no long-term difference in anxiety among participants, although 3 studies suggested increased short-term anxiety among those with positive or indeterminate results. Distress was decreased among individuals with negative results (compared with baseline) in 1 trial.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smoking behavior:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 RCTs identified no differences in smoking cessation rates, smoking relapse rates, or smoking intensity between LDCT and no LDCT screening groups.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In RCTs, smoking behavior among subjects with abnormal scans and those with negative scans showed mixed results, with 1 study showing a tendency toward smoking abstinence among those with abnormal scans. Mixed results were also seen in cohort studies.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 cohort study suggested that physician referral for patients with abnormal screening LDCT may result in higher smoking cessation rates.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incidental findings:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>There was no standardized approach to reporting incidental findings. Among LDCT studies, nonpulmonary lung findings were common; infections and other cancers were also diagnosed. Coronary artery calcification was identified in approximately 50% of participants in 1 cohort study evaluating CT scans retrospectively.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key Question 4. How effective is surgical resection for the treatment of early (stage IA) non-small cell lung cancer?

- 12 studies
 - Cohorts
 - No RCTs evaluated surgical resection of stage IA or IB NSCLC. All reported survival among patients with clinically-detected lung cancer and not selected for comorbidity
 - Fair
 - Moderate
 - Fair
 - No RCTs have compared treating stage IA or IB lung cancer with surgical resection compared with no treatment.
 - 5 studies from 4 cohorts in Japan showed 5-year survival rates for resected pathologic stage IA NSCLC ranging from 71%–90%. Five-year survival among cohorts evaluating pathologic stage IB resected lung cancer ranged from 70%–74%.
 - 2 large U.S. cohorts showed 5-year survival rates of 58%–66% for stage IA and 55% for stage IB lung cancer resected between 1990 and 2000.

Key Question 5. What are the harms associated with surgical resection of early (stage IA) non-small cell lung cancer?

- 6 studies
 - Cohorts
 - Studies reflect harms of surgical resection in patients identified in clinical practice with comorbidities; not necessarily a population eligible for screening
 - Fair
 - Low
 - Fair
 - No RCTs of LDCT screening evaluated the harms associated with resection of screen-detected NSCLC.
 - 2 cohort studies reported harms associated with resection of stage IA NSCLC. 1 Japanese study reported 1 postoperative death among 510 individuals undergoing resection between 1992 and 2001. 1 Italian study reported 9 postoperative deaths among 548 patients with resections of stage I NSCLC between 1991 and 1994.
 - 6 studies reported harms among large cohorts of individuals undergoing resection but did not specify results specifically for stage IA NSCLC.

Abbreviations: CI = confidence interval; CT = computed tomography; CXR = chest x-ray; LDCT = low-dose computed tomography; NSCLC = non-small cell lung cancer; py = person-years; RCT = randomized, controlled trial; RR = relative risk
Appendix A1. Search Strategies

Screening key questions 1, 2, and 3:

Database: Ovid MEDLINE(R) and Ovid OLDMEDLINE(R) <1947 to 2012>
Search Strategy:
--
1 exp Lung Neoplasms/ (146585)
2 exp Mass Screening/ (85357)
3 screen$.mp. (381192)
4 ((early or earlier or earliest) adj5 (detect$ or diagno$ or discover$ or find or finding)).mp. [mp=protocol supplementary concept, rare disease supplementary concept, title, original title, abstract, name of substance word, subject heading word, unique identifier] (123562)
5 exp early diagnosis/ (9549)
6 2 or 3 or 4 or 5 (492801)
7 1 and 6 (7310)
8 limit 7 to (english language and humans and yr="2000 -Current") (3399)

Database: EBM Reviews - Database of Abstracts of Reviews of Effects <4th Quarter 2012>
Search Strategy:
--
1 ((Lung or lungs or bronchi$ or alveol$ or respiratory tract$ or pulmonar$) adj5 (Neoplas$ or cancer$ or malig$ or tumor$ or tumour$ or carcino$ or adenocarcino$ or metastas$)).mp. [mp=title, full text, keywords] (276)
2 screen$.mp. (2503)
3 ((early or earlier or earliest) adj5 (detect$ or diagno$ or discover$ or find or finding)).mp. [mp=title, full text, keywords] (132)
4 2 or 3 (2562)
5 1 and 4 (52)

Search Strategy:
--
1 ((Lung or lungs or bronchi$ or alveol$ or respiratory tract$ or pulmonar$) adj5 (Neoplas$ or cancer$ or malig$ or tumor$ or tumour$ or carcino$ or adenocarcino$ or metastas$)).mp. [mp=title, text, subject heading word] (416)
2 screen$.mp. (2484)
3 ((early or earlier or earliest) adj5 (detect$ or diagno$ or discover$ or find or finding)).mp. [mp=title, text, subject heading word] (259)
4 2 or 3 (2575)
5 1 and 4 (50)

Database: EBM Reviews - Cochrane Central Register of Controlled Trials <4th Quarter 2012>
Search Strategy:
--
1 ((Lung or lungs or bronchi$ or alveol$ or respiratory tract$ or pulmonar$) adj5 (Neoplas$ or cancer$ or malig$ or tumor$ or tumour$ or carcino$ or adenocarcino$ or metastas$)).mp. [mp=title, original title, abstract, mesh headings, heading words, keyword] (6652)
2 screen$.mp. (11379)
3 ((early or earlier or earliest) adj5 (detect$ or diagno$ or discover$ or find or finding)).mp. [mp=title, original title, abstract, mesh headings, heading words, keyword] (2242)
4 2 or 3 (13141)
5 1 and 4 (252)
Appendix A1. Search Strategies

Database: EBM Reviews - Cochrane Database of Systematic Reviews <2005 to 2012>
Search Strategy:

--
1 (((Lung or lungs or bronchi$ or alveol$ or respiratory tract$ or pulmonar$) adj5 (Neoplas$ or cancer$ or malig$ or tumor$ or tumour$ or carcino$ or adenocarcino$ or metastas$)).mp. [mp=title, abstract, full text, keywords, caption text] (227)
2 screen$.mp. (3227)
3 ((early or earlier or earliest) adj5 (detect$ or diagnos$ or discover$ or find or finding)).mp. [mp=title, abstract, full text, keywords, caption text] (527)
4 2 or 3 (3431)
5 1 and 4 (142)

Database: EBM Reviews - Cochrane Database of Systematic Reviews <2005 to 2012>
Search Strategy:

--
1 (((lung$ or pulmonar$ or bronch$ or alveol$) adj5 (cancer$ or carcino$ or adenocarcino$ or malig$ or tumor$ or tumour$ or neopla$)).mp. [mp=title, abstract, full text, keywords, caption text] (242)
2 ((x ray$ or radiogra$ or sputum$ or cytolog$) adj5 (test$ or diagno$ or screen$ or find$ or found$ or discover$ or uncover$)).mp. [mp=title, abstract, full text, keywords, caption text] (302)
3 1 and 2 (17)
4 ((lung$ or pulmonar$ or bronch$ or alveol$) adj5 (cancer$ or carcino$ or adenocarcino$ or malig$ or tumor$ or tumour$ or neopla$) adj7 (test$ or diagno$ or screen$ or find$ or found$ or discover$ or uncover$)).mp. (55)
5 ((chest$ or thorax$ or thoracic$) adj5 (x-ray$ or radiogra$)).mp. [mp=title, abstract, full text, keywords, caption text] (233)
6 4 and 5 (9)
7 sputum.mp. [mp=title, abstract, full text, keywords, caption text] (221)
8 4 and 7 (5)
9 3 or 6 or 8 (23)
10 ((lung$ or pulmonar$ or bronch$ or alveol$) adj5 (cancer$ or carcino$ or adenocarcino$ or malig$ or tumor$ or tumour$ or neopla$)).mp. [mp=title, abstract, full text, keywords, caption text] (242)
11 ((x ray$ or xray$ or radiogra$ or sputum$) adj5 (test$ or diagno$ or screen$ or find$ or found$ or discover$ or uncover$)).mp. [mp=title, abstract, full text, keywords, caption text] (260)
12 10 and 11 (17)
13 ((lung$ or pulmonar$ or bronch$ or alveol$) adj5 (cancer$ or carcino$ or adenocarcino$ or malig$ or tumor$ or tumour$ or neopla$) adj7 (test$ or diagno$ or screen$ or find$ or found$ or discover$ or uncover$)).mp. (55)
14 ((chest$ or thorax$ or thoracic$) adj5 (x-ray$ or xray$ or radiogra$)).mp. [mp=title, abstract, full text, keywords, caption text] (236)
15 13 and 14 (9)
16 sputum.mp. [mp=title, abstract, full text, keywords, caption text] (221)
17 13 and 16 (5)
18 12 or 15 or 17 (18)

Database: EBM Reviews - Health Technology Assessment <4th Quarter 2012>
Search Strategy:

--
1 (((lung$ or pulmonar$ or bronch$ or alveol$) adj5 (cancer$ or carcino$ or adenocarcino$ or malig$ or tumor$ or tumour$ or neopla$)).mp. [mp=title, text, subject heading word] (186)
2 ((x ray$ or radiogra$ or sputum$ or cytolog$) adj5 (test$ or diagno$ or screen$ or find$ or found$ or discover$ or uncover$)).mp. [mp=title, text, subject heading word] (52)
3 1 and 2 (3)
4 ((lung$ or pulmonar$ or bronch$ or alveol$) adj5 (cancer$ or carcino$ or adenocarcino$ or malig$ or tumor$ or tumour$ or neopla$) adj7 (test$ or diagno$ or screen$ or find$ or found$ or discover$ or uncover$)).mp. (42)
Appendix A. Search Strategies

5 ((chest$ or thorax$ or thoracic$) adj5 (x-ray$ or radiogra$)).mp. [mp=title, text, subject heading word] (19)
6 4 and 5 (8)
7 sputum.mp. [mp=title, text, subject heading word] (8)
8 4 and 7 (2)
9 3 or 6 or 8 (8)
10 ((lung$ or pulmonar$ or bronch$ or alveol$) adj5 (cancer$ or carcino$ or adenocarcino$ or malig$ or tumor$ or tumour$ or neopla$)).mp. [mp=title, text, subject heading word] (186)
11 ((x ray$ or xray$ or radiogra$ or sputum$) adj5 (test$ or diagno$ or screen$ or find$ or found$ or discover$ or uncover$)).mp. [mp=title, text, subject heading word] (26)
12 10 and 11 (3)
13 ((lung$ or pulmonar$ or bronch$ or alveol$) adj5 (cancer$ or carcino$ or adenocarcino$ or malig$ or tumor$ or tumour$ or neopla$) adj7 (test$ or diagno$ or screen$ or find$ or found$ or discover$ or uncover$)).mp. (42)
14 ((chest$ or thorax$ or thoracic$) adj5 (x-ray$ or xray$ or radiogra$)).mp. [mp=title, text, subject heading word] (19)
15 13 and 14 (8)
16 sputum.mp. [mp=title, text, subject heading word] (8)
17 13 and 16 (2)
18 12 or 15 or 17 (8)

Intervention key questions 4 and 5:
Database: Ovid MEDLINE(R) and Ovid OLDMEDLINE(R) <1946 to 2012>
Search Strategy:
--
1 exp Lung Neoplasms/su [Surgery] (21220)
2 (stag$ adj (one or "1" or I or two or "2" or II or 1a or Ia or 1b or lb or 1c or lc or 2a or IIa or 2b or IIb)).mp. (54937)
3 ((early or earlier or earliest) adj5 (discover$ or found or find or finding or uncover$ or diagnos$ or detect$ or stage$ or staging)).mp. (239290)
4 2 or 3 (286513)
5 1 and 4 (3023)
6 exp lung neoplasms/ (157194)
7 exp Surgical Procedures, Operative/ (2186270)
8 4 and 6 and 7 (2707)
9 5 or 8 (3945)
10 exp "Outcome and Process Assessment (Health Care)"/ (602752)
11 9 and 10 (748)
12 exp Mortality/ (249169)
13 mo.fs. (367310)
14 12 or 13 (507080)
15 9 and 14 (1650)
16 exp survival analysis/ (150994)
17 9 and 16 (823)
18 exp Postoperative Complications/ (382994)
19 exp Intraoperative Complications/ (33158)
20 18 or 19 (405151)
21 9 and 20 (291)
22 ae.fs. (1238248)
23 ((advers$ or undesir$ or unwant$) adj5 (effect$ or outcome$ or result$)).mp. [mp=title, abstract, original title, name of substance word, subject heading word, protocol supplementary concept, rare disease supplementary concept, unique identifier] (131512)
24 exp "Wounds and Injuries"/et [Etiology] (109143)
25 22 or 23 or 24 (1394472)
26 9 and 25 (490)
27 exp "Quality of Life"/ (99185)
Appendix A1. Search Strategies

28 exp Quality-Adjusted Life Years/ (5646)
29 27 or 28 (103891)
30 9 and 29 (49)
31 exp "Costs and Cost Analysis"/ (164677)
32 9 and 31 (34)
33 11 or 15 or 17 or 21 or 26 or 30 or 32 (2450)
34 limit 33 to yr="2000 -Current" (1725)
Appendix A2. Inclusion and Exclusion Criteria

<table>
<thead>
<tr>
<th>Population</th>
<th>Include</th>
<th>Exclude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key questions 1–3:</td>
<td>Asymptomatic adults (ages ≥18 years) from large screening trials and/or studies who are generalizable to the United States</td>
<td>Key questions 1–3: Children
Symptoms of lung cancer
Prior lung cancer diagnosis</td>
</tr>
<tr>
<td>Key questions 4–5:</td>
<td>Adults (ages ≥18 years) with early (stage IA) non-small cell lung cancer who are generalizable to the United States</td>
<td>Key questions 4–5: Children
Not primary lung cancer
Greater than stage IA lung cancer</td>
</tr>
<tr>
<td>Interventions</td>
<td>Chest x-ray, computed tomography, and/or sputum cytology
Surgical resection</td>
<td>Key questions 1–3: No screening
Key questions 4–5: Chemotherapy, radiation therapy, and natural therapies</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Reduction in morbidity and/or all-cause mortality
Reduction in lung cancer mortality/morbidity
5-year and 10-year survival rates
Impact on smoking cessation
Detection of other abnormalities
Quality of life
Direct harms from screening and/or treatment interventions</td>
<td>Cost-effectiveness</td>
</tr>
<tr>
<td>Study types and designs</td>
<td>Randomized, controlled trials; systematic reviews/meta-analyses; cohorts; case-control studies; and case series Published in or after 2001</td>
<td>Opinions, editorials, case reports, no comparison group
Key questions 1–3: Sample size less than 1000
Key questions 4–5: Sample size less than 500</td>
</tr>
<tr>
<td>Duration</td>
<td>Key questions 1–3: Any length of duration
Key questions 4–5: At least 5 years of followup</td>
<td>Key questions 1–3: None
Key Questions 4–5: Less than 5 years of followup</td>
</tr>
</tbody>
</table>
Appendix A3. U.S. Preventive Services Task Force Quality Rating Criteria for Randomized, Controlled Trials

Randomized, Controlled Trials (RCTs)

Criteria:

- Initial assembly of comparable groups: RCTs—adequate randomization, including concealment and whether potential confounders were distributed equally among groups; cohort studies—consideration of potential confounders with either restriction or measurement for adjustment in the analysis; consideration of inception cohorts
- Maintenance of comparable groups (includes attrition, cross-overs, adherence, contamination)
- Important differential loss to followup or overall high loss to followup
- Measurements: equal, reliable, and valid (includes masking of outcome assessment)
- Clear definition of interventions
- Important outcomes considered
- Analysis: adjustment for potential confounders for cohort studies or intention-to-treat analysis for RCTs; for cluster RCTs, correction for correlation coefficient

Definition of ratings based on above criteria:

Good: Meets all criteria: comparable groups are assembled initially and maintained throughout the study (followup ≥80%); reliable and valid measurement instruments are used and applied equally to the groups; interventions are spelled out clearly; important outcomes are considered; and appropriate attention to confounders in analysis.

Fair: Studies will be graded “fair” if any or all of the following problems occur, without the important limitations noted in the “poor” category below: generally comparable groups are assembled initially but some question remains whether some (although not major) differences occurred in followup; measurement instruments are acceptable (although not the best) and generally applied equally; some but not all important outcomes are considered; and some but not all potential confounders are accounted for.

Poor: Studies will be graded “poor” if any of the following major limitations exists: groups assembled initially are not close to being comparable or maintained throughout the study; unreliable or invalid measurement instruments are used or not applied at all equally among groups (including not masking outcome assessment); and key confounders are given little or no attention.

Sources: Harris et al, 2001\(^48\)
Appendix A4. List of Reviewers

Expert Reviewers

Peter B. Bach, MD, MAPP, Full Member, Director, Center for Health Policy and Outcomes, Memorial Sloan-Kettering Cancer Center

Harold Sox, MD, Associate Director for Faculty, The Dartmouth Institute, Dartmouth Medical School

David J. Ballard, MD, MSPH, PhD, FACP, Senior Vice President and Chief Quality Officer, Baylor Health Care System, Executive Director and BHCS Endowed Chair, Institute for Health Care Research and Improvement

Federal Reviewers

Joseph Chin, MD, Office of Clinical Standards and Quality, Centers for Medicare and Medicaid Services

Barnett Kramer, MD, MPH, Associate Director for Disease Prevention, Director Office of Medical Applications of Research, Office of Disease Prevention, Office of the Director, National Institutes of Health

Linda Kinsinger, MD, MPH, VHA, National Center for Health Promotion and Disease Prevention

Paul Pinsky, PhD, National Institutes of Health
Abstracts of potentially relevant papers identified through MEDLINE, Cochrane*, and other sources† (N = 8149)

Excluded abstracts (n = 6415)

Full-text papers reviewed for relevance to Key Question (n = 1734)

Excluded full-text papers (n = 1671)
- Background= 400
- Wrong population= 117
- Wrong intervention= 146
- Wrong publication type= 539
- Non-English= 304
- Wrong outcome= 98
- Published prior to 2000= 22
- Sample size too small= 44
- Followup too short= 1

Final included papers‡: 63

Key questions 1–3: 50
- Randomized, controlled trials (n = 28)
 - DANTE: 2
 - DLCST: 3
 - ITALUNG: 3
 - LSS: 4
 - MILD: 1
 - NELSON: 9
 - NLST: 2
 - PLCO: 3
 - LUSI: 1

- Cohort studies (n = 22)
 - COSMOS: 3
 - I-ELCAP: 8
 - Mayo: 5
 - PALCAD: 1
 - PLUSS: 3
 - Japanese population: 2

Key questions 4 and 5: 13
- Cohort studies (n = 13)

Abbreviations: COSMOS = Continuing Observation of Smoking Subjects; DANTE = Detection and Screening of Early Lung Cancer by Novel Imaging Technology and Molecular Essays; DLCST = Danish Lung Cancer Screening Trial; I-ELCAP = International Early Lung Cancer Action Program; LSS = Lung Screening Study; MILD = Multicentric Italian Lung Detection; NELSON = Nederlands-LeuvenkankerLongkanker Screenings Onderzoek; NLST = National Lung Screening Trial; PALCAD = ProActive Lung Cancer Detection; PLCO = Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial; PLUSS = Pittsburgh Lung Screening Study; SCTS = Spiral Chest Computed Tomography Study
Appendix A6. List of Excluded Full-Text Papers

Key to exclusion codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Background</td>
</tr>
<tr>
<td>3</td>
<td>Wrong population</td>
</tr>
<tr>
<td>4</td>
<td>Wrong intervention</td>
</tr>
<tr>
<td>5</td>
<td>Wrong publication</td>
</tr>
<tr>
<td>6</td>
<td>Non-English, otherwise relevant</td>
</tr>
<tr>
<td>7</td>
<td>Wrong outcome</td>
</tr>
<tr>
<td>8</td>
<td>Conducted/Published prior to 2000</td>
</tr>
<tr>
<td>9</td>
<td>Followup too short</td>
</tr>
<tr>
<td>10</td>
<td>Sample size too small</td>
</tr>
</tbody>
</table>

Listing of excluded papers

Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 5

Exclusion code: 5

Exclusion code: 5

Exclusion code: 7

Exclusion code: 2

Exclusion code: 5

Exclusion code: 5

Exclusion code: 2

Exclusion code: 6

Exclusion code: 9

Exclusion code: 2

Exclusion code: 5

Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 4

Exclusion code: 5

Exclusion code: 4

Exclusion code: 6

Exclusion code: 6

Exclusion code: 5

Exclusion code: 2

Exclusion code: 6

Exclusion code: 10

Exclusion code: 3

Exclusion code: 3

Exclusion code: 2

Appendix A6. List of Excluded Full-Text Papers

Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 4

Exclusion code: 5

Exclusion code: 5

Exclusion code: 4

Exclusion code: 10

Exclusion code: 5

Exclusion code: 7

Exclusion code: 7

http://dx.doi.org/10.1002/14651858
Exclusion code: 2

Exclusion code: 5

Exclusion code: 6

Exclusion code: 2

Exclusion code: 5

Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 7

Exclusion code: 3

Exclusion code: 5

Exclusion code: 7

Exclusion code: 2

Exclusion code: 5

Exclusion code: 6

Exclusion code: 5

Exclusion code: 5

Exclusion code: 2

Exclusion code: 5

Exclusion code: 4

Appendix A6. List of Excluded Full-Text Papers

Appendix A6. List of Excluded Full-Text Papers

Chest. 2007;132(3 Suppl):69S-77S, [PMID: 17873161]
Exclusion code: 5

Exclusion code: 4

Exclusion code: 5

Exclusion code: 2

Exclusion code: 2

Exclusion code: 3

Exclusion code: 3

Exclusion code: 2

Exclusion code: 7

Exclusion code: 5

Exclusion code: 2

Exclusion code: 4

Barchuk AS, Arsen’ev AI, Pozharisskii KM. [Clinical and morphologic correlations in bronchoalveolar cancer].
Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 6

Exclusion code: 4

Exclusion code: 7

Exclusion code: 2

Exclusion code: 6

Exclusion code: 5

Exclusion code: 7

Exclusion code: 4

Exclusion code: 5

Exclusion code: 5

Baumann M. [Does chemotherapy improve the results of postoperative radiotherapy in completely resected stage II and IIIA non-small-cell bronchial cancer?]. Strahlenther. Onkol. 2001;177(4):220-221, [PMID: 11370558]
Exclusion code: 6

Exclusion code: 5

Bechtel JJ, Kelley W, Coons T, klein G, Slagel D, Petty TL. Lung cancer detection
Appendix A6. List of Excluded Full-Text Papers

Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 5

Exclusion code: 6

Exclusion code: 2

Exclusion code: 2

Exclusion code: 2

Exclusion code: 4

Exclusion code: 2

Exclusion code: 5

Exclusion code: 5

Exclusion code: 3

Exclusion code: 6

Exclusion code: 2

Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 2

Exclusion code: 7

Exclusion code: 6

Exclusion code: 4

Exclusion code: 4

Exclusion code: 4

Exclusion code: 5

Exclusion code: 5

Exclusion code: 3

Exclusion code: 5

Exclusion code: 5

Exclusion code: 5

Exclusion code: 6

Lung cancer screening using tumour markers? A view in consideration of socioeconomic aspects (Brief record). John
Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 5

Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C. Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases [Systematic Review]: Cochrane Database of Systematic Reviews; 2012
Exclusion code: 4

Exclusion code: 5

Exclusion code: 5

Exclusion code: 5

Exclusion code: 2

Exclusion code: 5

Exclusion code: 2

Exclusion code: 5

Exclusion code: 5

Exclusion code: 2

Exclusion code: 6

Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 7

Bluoss C. [Lung metastases secondary to bronchopulmonary cancer]. *Pneumologia.*
2010;59(2):68-72, [PMID: 20695360]
Exclusion code: 6

Exclusion code: 4

Exclusion code: 2

Exclusion code: 2

Exclusion code: 3

Exclusion code: 2

Exclusion code: 2

Bolca C, Brontos ML, Conti M, Frechette E. [Video-assisted thoracoscopic lobectomy—the treatment of choice for stage I NSCLC]. *Pneumologia.*
2010;59(4):201-203, [PMID: 21365802]
Exclusion code: 6

Bondiau PY, Doyen J, Mammar H, et al. [Reirradiation of spine and lung tumor with CyberKnife]. *Cancer Radiother.*
2010;14(6-7):438-441, [PMID: 20724188]
Exclusion code: 6

Exclusion code: 5

Exclusion code: 6

Exclusion code: 6

Exclusion code: 7
Appendix A6. List of Excluded Full-Text Papers

Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 2

Exclusion code: 6

Exclusion code: 6

Exclusion code: 2

Exclusion code: 5

Exclusion code: 2

Exclusion code: 10

Exclusion code: 6

Exclusion code: 2

Exclusion code: 2

Exclusion code: 4

Appendix A6. List of Excluded Full-Text Papers

Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 7

Exclusion code: 2

Centre for Reviews and Dissemination. A systematic review and lessons learned from early lung cancer detection trials using low-dose computed tomography of the chest (Structured abstract): Database of Abstracts of Reviews of Effects; 2011 Exclusion code: 2

Centre for Reviews and Dissemination. Screening for lung cancer with low-dose computed tomography: a systematic review and meta-analysis of the baseline findings of randomized controlled trials (Provisional abstract): Database of Abstracts of Reviews of Effects; 2011 Exclusion code: 2

Centre for Reviews and Dissemination. Prevalence of incidental findings in computed tomographic screening of the chest: a systematic review (Structured abstract): Database of Abstracts of Reviews of Effects; 2011 Exclusion code: 2

Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 10

Exclusion code: 3

Chabner BA. Smoke, then fire: lung cancer screening studies under further scrutiny. *Oncologist._ 2008;13(4):348-349, [PMID: 18448547]
Exclusion code: 2

Exclusion code: 6

Exclusion code: 5

Exclusion code: 5

Exclusion code: 6

Exclusion code: 5

Exclusion code: 5

Exclusion code: 2

Exclusion code: 4

Exclusion code: 2

Exclusion code: 5
Appendix A6. List of Excluded Full-Text Papers

Appendix A6. List of Excluded Full-Text Papers

Choi J, Shim YM, Kim K, Kim J. Pattern of recurrence after curative resection of...
Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 3

Exclusion code: 3

Exclusion code: 2

Christie B. Screening trial of blood test for lung cancer is set to start in Scotland. *BMJ.* 2012;344:e2312, [PMID: 22451495]
Exclusion code: 4

Exclusion code: 5

Exclusion code: 3

Exclusion code: 2

Exclusion code: 10

Exclusion code: 6

Exclusion code: 2

Exclusion code: 2

Exclusion code: 2

Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 2

Appendix A6. List of Excluded Full-Text Papers

screening (ITALUNG-CT study) [Abstract]. Paper presented at: European Respiratory Society Annual Congress, Barcelona, Spain, September 2010
Exclusion code: 5

Exclusion code: 3

Exclusion code: 5

Exclusion code: 6

Exclusion code: 2

Exclusion code: 2

Exclusion code: 4

Exclusion code: 7

Exclusion code: 5

Exclusion code: 2

Exclusion code: 3

Exclusion code: 6

Exclusion code: 5
Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 6

Exclusion code: 6

Exclusion code: 5

Exclusion code: 7

Exclusion code: 2

Exclusion code: 3

Date H, Andou A, Shimizu N. The value of limited resection for 'clinical' stage I peripheral non-small cell lung cancer in poor-risk patients: Comparison of limited resection and lobectomy by a computer-assisted matched study. Tumori. 1994;80(6):422-426, [PMID: 7900230]
Exclusion code: 8
Appendix A6. List of Excluded Full-Text Papers

Dement J, Welch L, Haile E, Myers D. Mortality among sheet metal workers participating in a medical screening
Appendix A6. List of Excluded Full-Text Papers

Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 5

Exclusion code: 4

Exclusion code: 4

Exclusion code: 5

Exclusion code: 5

Exclusion code: 2

Exclusion code: 2

Exclusion code: 2

Exclusion code: 5

Exclusion code: 5

Exclusion code: 6

Exclusion code: 6

Exclusion code: 5

Exclusion code: 2
Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 8

Exclusion code: 2

Exclusion code: 5

Exclusion code: 6

Exclusion code: 6

Exclusion code: 3

Exclusion code: 5

Exclusion code: 5

Exclusion code: 5

Exclusion code: 5

Exclusion code: 3

Exclusion code: 6

Exclusion code: 5

Dome B, Timar J, Dobos J, et al. Identification and clinical significance of circulating endothelial progenitor cells in

Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 4

Exclusion code: 5

Exclusion code: 5

Exclusion code: 5

Exclusion code: 8

Exclusion code: 4

Exclusion code: 5

Exclusion code: 6

Exclusion code: 5

Exclusion code: 4

Exclusion code: 5

Exclusion code: 5

Exclusion code: 2

Exclusion code: 2

Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 3

Exclusion code: 5

Exclusion code: 5

Exclusion code: 2

Exclusion code: 5

Exclusion code: 5

Exclusion code: 6

Exclusion code: 4

Exclusion code: 5

Exclusion code: 6

Exclusion code: 6

Exclusion code: 3
Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 2

Exclusion code: 5

Exclusion code: 5

Exclusion code: 4

Exclusion code: 5

Exclusion code: 5

Exclusion code: 2

Exclusion code: 10

Exclusion code: 2

Exclusion code: 10

Exclusion code: 3

Exclusion code: 2

Exclusion code: 5
Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 3

Exclusion code: 6

Exclusion code: 6

Exclusion code: 3

Ferretti G. What are the tools for post-occupational follow-up, how should they be performed and what are their performance, limits and benefit/risk ratio? Chest X-Ray and CT scan. Revue des Maladies

Exclusion code: 10

Exclusion code: 3

Exclusion code: 5

Exclusion code: 6

Exclusion code: 10

Ferretti G. What are the tools for post-occupational follow-up, how should they be performed and what are their performance, limits and benefit/risk ratio? Chest X-Ray and CT scan. Revue des Maladies
Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 6

Exclusion code: 5

Exclusion code: 6

Exclusion code: 6

Exclusion code: 6

Exclusion code: 2

Exclusion code: 5

Exclusion code: 4

Exclusion code: 2

Exclusion code: 3

Exclusion code: 2

Exclusion code: 7

Exclusion code: 6

Appendix A6. List of Excluded Full-Text Papers

Predictive Oncology and Intervention Strategies 2004
Exclusion code:5

Exclusion code: 2

Exclusion code: 5

Exclusion code: 5

Exclusion code: 2

Exclusion code: 7

Exclusion code: 5

Exclusion code: 7

Exclusion code: 5

Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 5

Exclusion code: 2

Exclusion code: 4

Exclusion code: 2

Exclusion code: 4

Exclusion code: 7

Exclusion code: 4

Appendix A6. List of Excluded Full-Text Papers

Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 4

Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 5

Exclusion code: 2

Exclusion code: 5

Exclusion code: 5

Exclusion code: 2

Exclusion code: 5

Exclusion code: 5

Exclusion code: 2

Exclusion code: 6

Exclusion code: 5

Exclusion code: 8

Exclusion code: 2

Exclusion code: 2

Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 2

Exclusion code: 4

Exclusion code: 3

Exclusion code: 3

Exclusion code: 6

Exclusion code: 6

Exclusion code: 6

Exclusion code: 5

Exclusion code: 5

Exclusion code: 2

Exclusion code: 6

Exclusion code: 2

Exclusion code: 5
Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 5

Goldberg KB. NCI Lung Cancer Screening Trial: The Cancer Letter 2002
Exclusion code: 5

Exclusion code: 4

Exclusion code: 5

Exclusion code: 5

Exclusion code: 2

Exclusion code: 3

Exclusion code: 7

Exclusion code: 2

Exclusion code: 3

Exclusion code: 5

Exclusion code: 2

Exclusion code: 2

Exclusion code: 2
Appendix A6. List of Excluded Full-Text Papers

Gori IF, M.E., Martinez AP. An automated system for lung nodule detection in low-dose computed tomography. Paper presented at: Computer-Aided Diagnosis2007; San Diego, CA Exclusion code: 4

Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 5

Guyatt G, Oxman AD, Akl EA, et al. GRADE guidelines: 1. Introduction—GRADE evidence profiles and summary of
Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 2

Exclusion code: 5

Exclusion code: 5

Exclusion code: 8

Exclusion code: 5

Exclusion code: 3

Exclusion code: 6

Exclusion code: 5

Exclusion code: 2

Exclusion code: 6

Exclusion code: 6

Exclusion code: 5

Exclusion code: 4

Exclusion code: 2

Hanaoka T, Sone S, Takayama F, Hayano T, Yamaguchi S, Okada M. Presence of
Exclusion code: 3

Exclusion code: 4

Exclusion code: 6

Exclusion code: 8

Exclusion code: 5

Exclusion code: 5

Exclusion code: 4

Exclusion code: 7

Exclusion code: 5

Exclusion code: 4

Exclusion code: 7

Exclusion code: 4

Appendix A6. List of Excluded Full-Text Papers

Henschke C, Wisnivesky JP, Yankelevitz D, Miettinen OS. Screen-diagnosed small stage I cancers of the lung: genuineness and
Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 3

Henschke CI. Early lung cancer action project: overall design and findings from baseline screening. *Cancer*. 2000;89(11 Suppl):2474-2482, [PMID: 11147630]
Exclusion code: 5

Exclusion code: 5

Exclusion code: 5

Exclusion code: 5

Henschke CI. Reply to the letters to the editor from Bach and Silvestri. *Clin. Cancer Res.* 2008;14(8):2511
Exclusion code: 5

Exclusion code: 5

Exclusion code: 2

Exclusion code: 2

Exclusion code: 5

Exclusion code: 4

Exclusion code: 5

Exclusion code: 2

Exclusion code: 5

Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 2

Exclusion code: 5

Exclusion code: 5

Exclusion code: 2

Exclusion code: 5

Exclusion code: 2

Exclusion code: 2

Exclusion code: 5

Henschke CI, Yankelevitz DF. In reply. *Oncologist.* 2008;13(5):610-612
Exclusion code: 5

Exclusion code: 5
Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 2

Exclusion code: 5

Exclusion code: 8

Exclusion code: 7

Exclusion code: 4

Exclusion code: 2

Exclusion code: 2

Exclusion code: 2

Exclusion code: 2

Exclusion code: 7

Exclusion code: 5

Exclusion code: 6

Herth FJF, Eberhardt R, Anantham D, Gompelmann D, Zakaria MW, Ernst A.
Exclusion code: 2

Exclusion code: 6

Exclusion code: 5

Exclusion code: 4

Exclusion code: 2

Exclusion code: 5

Hillerdal G. Indolent lung cancers--time for a paradigm shift: a review. *J Thorac Oncol.* 2008;3(3):208-211, [PMID: 18317061]
Exclusion code: 5

Exclusion code: 6

Exclusion code: 6

Exclusion code: 5

Exclusion code: 2

Exclusion code: 5

Exclusion code: 6

Exclusion code: 5

Appendix A6. List of Excluded Full-Text Papers

Appendix A6. List of Excluded Full-Text Papers

Iakovou I, Karavida N, Kotzassarlidou M. The computerized tomography scans and
Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 5

Exclusion code: 6

Exclusion code: 4

Exclusion code: 6

Exclusion code: 2

Exclusion code: 10

Exclusion code: 4

Exclusion code: 10

Infante MV, Fabio LR, Cavuto S, et al. Dante a randomized study on lung cancer screening with low dose spiral CT (LDCT) end of accrual and preliminary results [Abstract]. *Chest.* 2006;130(4 Suppl):114s, [PMID: 12409588]
Exclusion code: 5

Exclusion code: 5

Exclusion code: 2

Exclusion code: 5

Ishiyama T, Aoyama T, Hirahara H, Iwashima A, Tsukada H, Souma T.
Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 6

Exclusion code: 7

Exclusion code: 7

Exclusion code: 10

Exclusion code: 2

Exclusion code: 2

Exclusion code: 6

Exclusion code: 7

Exclusion code: 6

Exclusion code: 6

Exclusion code: 5

Exclusion code: 4
Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 7

Exclusion code: 2

Exclusion code: 5

Exclusion code: 2

Exclusion code: 5

Exclusion code: 3

Exclusion code: 5

Exclusion code: 5
Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 5

Exclusion code: 2

Exclusion code: 5

Exclusion code: 2

Exclusion code: 5

Exclusion code: 3

Exclusion code: 6

Exclusion code: 2

Exclusion code: 4

Exclusion code: 5

Exclusion code: 5

Exclusion code: 7

Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 4

Exclusion code: 6

Exclusion code: 6

Exclusion code: 2

Exclusion code: 5

Kamerow D. Screening for early detection of lung cancer. BMJ. 2010;341:c6544, [PMID: 21084372]

Exclusion code: 5

Exclusion code: 6

Exclusion code: 2

Exclusion code: 3 Japan

Exclusion code: 2

Exclusion code: 5

Exclusion code: 2

Exclusion code: 7
Appendix A6. List of Excluded Full-Text Papers

Appendix A6. List of Excluded Full-Text Papers

Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 2

Exclusion code: 5

Exclusion code: 5

Exclusion code: 5

Exclusion code: 5

Exclusion code: 6

Exclusion code: 6

Exclusion code: 3

Exclusion code: 2

Exclusion code: 2

Exclusion code: 3

Exclusion code: 10

Kim TJ, Han DH, Jin KN, Won Lee K. Lung cancer detected at cardiac CT: prevalence, clinicoradiologic features, and
Appendix A6. List of Excluded Full-Text Papers

Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 7

Exclusion code: 6

Exclusion code: 6

Exclusion code: 6

Exclusion code: 2

Exclusion code: 10

Exclusion code: 3

Exclusion code: 6

Exclusion code: 6
Appendix A6. List of Excluded Full-Text Papers

Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 5

Exclusion code: 6

Exclusion code: 3

Exclusion code: 5

Exclusion code: 7

Exclusion code: 6

Exclusion code: 5

Exclusion code: 2

Exclusion code: 2

Exclusion code: 5

Exclusion code: 4

Exclusion code: 5

Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 7

Exclusion code: 2

Exclusion code: 3

Exclusion code: 8

Exclusion code: 2

Exclusion code: 5

Exclusion code: 4

Exclusion code: 2

Exclusion code: 6

Exclusion code: 5

Lazoura O, Vassiou K, Kanavou T, Vlychou M, Arvanitis DL, Fezoulidis IV. Incidental non-cardiac findings of a coronary angiography with a 128-slice
Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 5

Exclusion code: 4

Exclusion code: 6

Exclusion code: 2

Exclusion code: 5

Exclusion code: 2

Exclusion code: 7

Exclusion code: 5

Exclusion code: 5

Exclusion code: 5

Exclusion code: 3

Exclusion code: 10

Exclusion code: 4

Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 5
Exclusion code: 3
Exclusion code: 5
Exclusion code: 2
Exclusion code: 5
Exclusion code: 2
Exclusion code: 5
Exclusion code: 7
Exclusion code: 6
Exclusion code: 5
Exclusion code: 6
Exclusion code: 3
Exclusion code: 3
Exclusion code: 6
Appendix A6. List of Excluded Full-Text Papers

Li H-h, Zhang Q-z, Xu L, Chen L, Wei Y-x, Wang Y-h. [Diagnosis and treatment for postoperative lobar torsion]. Chung Hua I Hsueh Tsa Chih. 2007;87(27):1915-1917, [PMID: 17923017]
Exclusion code: 6

Exclusion code: 4

Exclusion code: 2

Exclusion code: 7

Exclusion code: 7

Exclusion code: 8

Exclusion code: 5

Exclusion code: 6

Exclusion code: 7

Exclusion code: 2

Exclusion code: 6

Exclusion code: 2
Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 2

Exclusion code: 2

Exclusion code: 6

Exclusion code: 6

Exclusion code: 6

Exclusion code: 5

Exclusion code: 3

Exclusion code: 5

Exclusion code: 5

Exclusion code: 4

Exclusion code: 6

Exclusion code: 6
Appendix A6. List of Excluded Full-Text Papers

Lyons G, Quadrelli S, Chimondegy D, Iotti A, Silva C. [Bronchioalveolar carcinoma:

Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 2

Exclusion code: 4

Exclusion code: 5

Exclusion code: 7

Exclusion code: 4

Exclusion code: 2

Exclusion code: 6

Exclusion code: 2

Exclusion code: 5

Exclusion code: 2

Exclusion code: 2

Appendix A6. List of Excluded Full-Text Papers

Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 4

Exclusion code: 6

Exclusion code: 5

Exclusion code: 2

Exclusion code: 5

Exclusion code: 5

Exclusion code: 2

McBride D. Early detection with computed tomography scans can detect lung cancer, may save lives. *ONS Connect.* 2007;22(2):24, [PMID: 17393640]
Exclusion code: 5

Exclusion code: 2

Exclusion code: 2

Exclusion code: 2

Exclusion code: 2

Exclusion code: 2
Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 4

Exclusion code: 5

Exclusion code: 5

Exclusion code: 7

Exclusion code: 2

Exclusion code: 2

Exclusion code: 5

Exclusion code: 5

Exclusion code: 4

Exclusion code: 2

Exclusion code: 5

Exclusion code: 5

Melamed MR, Flehinger BJ, Zaman MB, Heelan RT, Perchick WA, Martini N. Screening for early lung cancer. Results of the Memorial Sloan-Kettering study in...
Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 5

Exclusion code: 5

Exclusion code: 6

Exclusion code: 6

Exclusion code: 3

Exclusion code: 3

Exclusion code: 2

Exclusion code: 2

Exclusion code: 6

Exclusion code: 5

Exclusion code: 2

Exclusion code: 6

Exclusion code: 5

Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 5

Exclusion code: 2

Exclusion code: 5

Exclusion code: 5

Exclusion code: 5

Exclusion code: 5

Exclusion code: 2

Exclusion code: 4

Exclusion code: 5

Exclusion code: 5
Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 3

Exclusion code: 4

Exclusion code: 6

Exclusion code: 4

Exclusion code: 5

Exclusion code: 2

Exclusion code: 6

Exclusion code: 6

Exclusion code: 6

Exclusion code: 2

Exclusion code: 5

Exclusion code: 5

Exclusion code: 5

Exclusion code: 5
Appendix A6. List of Excluded Full-Text Papers

Nakamura H, Kawasaki N, Taguchi M, Kabasawa K. Survival following lobectomy vs limited resection for stage I lung cancer:
Appendix A6. List of Excluded Full-Text Papers

National Cancer Institute. Lung cancer trial results show mortality benefit with low-dose CT: Twenty percent fewer lung cancer deaths seen among those who were screened with low-dose spiral CT than with chest X-ray National Cancer Institute at the National Institutes of Health 2010; http://www.cancer.gov/newscenter/pressreleases/2010/NLSTResultsRelease Accessed May 20, 2011 Exclusion code: 2

Exclusion code: 5

Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 2

Exclusion code: 3

Exclusion code: 2

Exclusion code: 5

Exclusion code: 2

Exclusion code: 7

Exclusion code: 4

Exclusion code: 7

Exclusion code: 6

Exclusion code: 4

Exclusion code: 4

Exclusion code: 6

Exclusion code: 2
Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 6

Exclusion code: 5

Exclusion code: 6

Exclusion code: 2

Exclusion code: 3

Exclusion code: 10
Appendix A6. List of Excluded Full-Text Papers

Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 6

Exclusion code: 6

Exclusion code: 2

Exclusion code: 5

Exclusion code: 6

Exclusion code: 6

Exclusion code: 5

Exclusion code: 6

Exclusion code: 6

Exclusion code: 6

Exclusion code: 6

Exclusion code: 6

Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 5

Exclusion code: 5

Exclusion code: 6

Exclusion code: 6

Exclusion code: 5

Exclusion code: 5

Exclusion code: 5

Exclusion code: 6

Exclusion code: 6

Exclusion code: 5

Exclusion code: 5

Exclusion code: 6

Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 10

Exclusion code: 5

Exclusion code: 10

Exclusion code: 2

Exclusion code: 2

Exclusion code: 6

Exclusion code: 6

Exclusion code: 5

Exclusion code: 10

Exclusion code: 5

Exclusion code: 2

Exclusion code: 5

Exclusion code: 5

Exclusion code: 10

Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 4
Exclusion code: 7
Exclusion code: 4
Exclusion code: 5
Exclusion code: 5

Exclusion code: 5
Exclusion code: 5
Exclusion code: 5
Exclusion code: 5
Exclusion code: 5
Exclusion code: 6
Exclusion code: 5
Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 5

Exclusion code: 6

Exclusion code: 2

Exclusion code: 6

Exclusion code: 2

Exclusion code: 7

Exclusion code: 5

Exclusion code: 8

Exclusion code: 6

Exclusion code: 2

Exclusion code: 5

Exclusion code: 5

Exclusion code: 5

Exclusion code: 5

Pfannschmidt J, Muley T, Bulzebruck H, Hoffmann H, Dienemann H. Prognostic
Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 4

Exclusion code: 6

Exclusion code: 5

Exclusion code: 2

Exclusion code: 3

Exclusion code: 3

Exclusion code: 4

Exclusion code: 7

Exclusion code: 2

Exclusion code: 5

Exclusion code: 6

Exclusion code: 6

Ploeg AJ, Kappetein AP, van Tongeren RB, Pahlplatz PV, Kastelein GW, Breslau PJ. Factors associated with perioperative complications and long-term results after
Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 3

Exclusion code: 2

Exclusion code: 6

Exclusion code: 10

Exclusion code: 5

Exclusion code: 6

Exclusion code: 8

Exclusion code: 6

Exclusion code: 2

Exclusion code: 5

Qin M, Fu Y, Yu D, Xu S, Han M, Wang Z. [Diagnosis and treatment of tracheal or bronchotracheal adenoid cystic
Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 6

Exclusion code: 2

Exclusion code: 5

Exclusion code: 2

Exclusion code: 4

Exclusion code: 2

Exclusion code: 2

Exclusion code: 6

Exclusion code: 5

Exclusion code: 10

Exclusion code: 5

Exclusion code: 5

Exclusion code: 5

Exclusion code: 5

Exclusion code: 2

Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 5

Exclusion code: 5

Exclusion code: 2

Exclusion code: 2

Exclusion code: 4

Exclusion code: 6

Exclusion code: 6

Exclusion code: 2

Exclusion code: 3

Exclusion code: 3

Exclusion code: 2

Exclusion code: 5

Exclusion code: 5

Exclusion code: 2

Rodondi N, Cornuz J. Potential pitfalls in reading medical articles for primary care
Appendix A6. List of Excluded Full-Text Papers

Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 2

Exclusion code: 6

Exclusion code: 6

Exclusion code: 5

Exclusion code: 2

Exclusion code: 2

Exclusion code: 6

Exclusion code: 6

Exclusion code: 6

Exclusion code: 6

Exclusion code: 5

Exclusion code: 6

Exclusion code: 8
Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 2

Exclusion code: 5

Exclusion code: 6

Exclusion code: 5

Exclusion code: 2

Exclusion code: 6

Exclusion code: 6

Exclusion code: 4

Exclusion code: 7

Exclusion code: 3

Exclusion code: 7
Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 7

Exclusion code: 10

Exclusion code: 5

Exclusion code: 5

Exclusion code: 5

Exclusion code: 3

Exclusion code: 6

Exclusion code: 5

Exclusion code: 4

Exclusion code: 4

Exclusion code: 5

Exclusion code: 2

Schnoll RA, Miller SM, Unger M, McAleer C, Halbherr T, Bradley P. Characteristics of female smokers attending a lung cancer...
Appendix A6. List of Excluded Full-Text Papers

Appendix A6. List of Excluded Full-Text Papers

Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 2

Exclusion code: 3

Sigurdardottir JM, Isaksson HJ, Johannsson KB, Jonsson S, Gudbjartsson T. [Histology does not accurately predict the clinical behaviour of bronchopulmonary carcinoids - results from an Icelandic population-based study]. *Laeknabladid.* 2008;94(2):125-130, [PMID: 18310777]

Exclusion code: 6

Exclusion code: 2

Exclusion code: 5

Exclusion code: 2

Exclusion code: 2

Exclusion code: 7

Exclusion code: 5

Exclusion code: 5

Exclusion code: 2

Exclusion code: 3

Exclusion code: 2

Screening for Lung Cancer 179 Pacific Northwest EPC
Appendix A6. List of Excluded Full-Text Papers

Laeknabladid. 2010;96(4):243-249, [PMID: 20339163]
Exclusion code: 6

Exclusion code: 2

Exclusion code: 7

Exclusion code: 5

Exclusion code: 2

Exclusion code: 5

Exclusion code: 5
Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 5

Exclusion code: 2

Smith-Bindman R, Miglioretti DL. CTDI vol, DLP, and effective dose are excellent measures for use in CT quality improvement. *Radiology.* 2011;261(3):999, [PMID: 22096003]
Exclusion code: 5

Exclusion code: 5

Exclusion code: 2

Exclusion code: 5

Exclusion code: 3

Exclusion code: 2

Exclusion code: 5

Exclusion code: 2

Exclusion code: 4

Exclusion code: 2
Appendix A6. List of Excluded Full-Text Papers

Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 5

Exclusion code: 3

Exclusion code: 5

Exclusion code: 2

Exclusion code: 5

Exclusion code: 5

Exclusion code: 5

Exclusion code: 3

Exclusion code: 2

Exclusion code: 5

Exclusion code: 4

Exclusion code: 2

Exclusion code: 4

Appendix A6. List of Excluded Full-Text Papers

Su X-d, Wang X, Rong T-h, et al. [Prognostic effect of mediastinal lymph...
Appendix A6. List of Excluded Full-Text Papers

Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 5

Exclusion code: 6

Exclusion code: 7

Exclusion code: 5

Exclusion code: 5

Exclusion code: 7

Exclusion code: 2

Swensen SJ. Screening for cancer with computed tomography. BMJ. 2003;326(7395):894-895, [PMID: 12714453]
Exclusion code: 2

Exclusion code: 5

Exclusion code: 5

Exclusion code: 2

Exclusion code: 6

Takao M, Inoue K, Watanabe F, et al. [A rational approach of limited resection for small peripheral lung adenocarcinoma with curative intent; analyses of multiple
Appendix A6. List of Excluded Full-Text Papers

Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 4

Exclusion code: 2

Exclusion code: 3

Exclusion code: 5

Exclusion code: 5

Exclusion code: 6

http://www.cadth.ca/media/pdf/213_ct_ceta p_e.pdf Accessed 30 Jan 2013
Exclusion code: 5

Exclusion code: 8

Exclusion code: 8

Exclusion code: 2

Exclusion code: 8

Exclusion code: 2

Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 10

Exclusion code: 6

Exclusion code: 7

Exclusion code: 5

Exclusion code: 2

Exclusion code: 2

Exclusion code: 5

Exclusion code: 5

Exclusion code: 5

Exclusion code: 5

Exclusion code: 2

Exclusion code: 5

Exclusion code: 6

Exclusion code: 6
Appendix A6. List of Excluded Full-Text Papers

Appendix A6. List of Excluded Full-Text Papers

Appendix A6. List of Excluded Full-Text Papers

Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 4

Exclusion code: 5

Exclusion code: 2

Exclusion code: 2

Exclusion code: 7

Exclusion code: 2

Exclusion code: 5

Exclusion code: 2

Exclusion code: 2

Exclusion code: 5

Exclusion code: 5

Exclusion code: 5

Appendix A6. List of Excluded Full-Text Papers

ecancermedicalscience. 2010;4(1), [PMID: 22276037]
Exclusion code: 5

Exclusion code: 2

Vidal Serrano S, Méndez AL. CT screening for lung cancer; sistematic review. Cribado de cáncer de pulmón con TC de tórax: Revisión sistemática. 2007;129(15):582-587, [PMID: 17988617]
Exclusion code: 5

Exclusion code: 5

Exclusion code: 5

Viñes JJ. Effectiveness of early detection of diseases. La efectividad de la detección precoz de las enfermedades. 2007;30(1):11-27, [PMID: 17491604]
Exclusion code: 5

Exclusion code: 2

Exclusion code: 5

Exclusion code: 2

Exclusion code: 5

Exclusion code: 5

Exclusion code: 3

Exclusion code: 3
Appendix A6. List of Excluded Full-Text Papers

Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 3

Exclusion code: 6

Exclusion code: 6

Exclusion code: 4

Exclusion code: 5

Exclusion code: 5

Exclusion code: 5

Exclusion code: 6

Exclusion code: 6

Exclusion code: 6

Exclusion code: 6

Exclusion code: 5

Exclusion code: 2

Weder W, Hillinger S. [Tumor surveillance after resection of lung cancer]. *Ther.*
Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 6

Exclusion code: 6

Exclusion code: 6

Exclusion code: 5

Exclusion code: 2

Exclusion code: 2

Exclusion code: 2

Exclusion code: 2

Exclusion code: 6

Exclusion code: 5

Exclusion code: 5

Exclusion code: 5

Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 3

Exclusion code: 5

Exclusion code: 5

Exclusion code: 5

Exclusion code: 5

Exclusion code: 3

Exclusion code: 7

Exclusion code: 2

Exclusion code: 2

Exclusion code: 8

Exclusion code: 5

Winkler V, Ng N, Tesfaye F, Becher H. Predicting lung cancer deaths from
Exclusion code: 2

Exclusion code: 10

Exclusion code: 7

Exclusion code: 2

Exclusion code: 2

Exclusion code: 3

Exclusion code: 5

Exclusion code: 7

Exclusion code: 5

Exclusion code: 5

Exclusion code: 3

Exclusion code: 7
Appendix A6. List of Excluded Full-Text Papers

Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 4

Exclusion code: 2

Exclusion code: 6

Exclusion code: 10

Exclusion code: 10

Exclusion code: 10

Exclusion code: 3

Exclusion code: 6

Exclusion code: 4

Exclusion code: 2

Exclusion code: 7

Exclusion code: 6
Appendix A6. List of Excluded Full-Text Papers

Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 6

Exclusion code: 5

Exclusion code: 6

Exclusion code: 6

Exclusion code: 10

Appendix A6. List of Excluded Full-Text Papers

Exclusion code: 6

Exclusion code: 4

Exclusion code: 4

Exclusion code: 6

Exclusion code: 4

Exclusion code: 6

Exclusion code: 6

Exclusion code: 4

Exclusion code: 6

Exclusion code: 6

Exclusion code: 6

Exclusion code: 2
Appendix A6. List of Excluded Full-Text Papers

Appendix B1. Evidence Table of Included Randomized, Controlled Trials

<table>
<thead>
<tr>
<th>Author, year, title</th>
<th>Population</th>
<th>Risk group</th>
<th>Screening comparison (In vs. Co)</th>
<th>Imaging evaluation strategy</th>
<th>Suspicious abnormality finding evaluation strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Lung Screening Trial Research Team et al, 2011</td>
<td>Ages 55 to 74 years</td>
<td>Current or former (quit ≤15 years ago) smoker with ≥30 pack-year smoking history</td>
<td>CT vs. CXR: CT: Low-dose (1.5 mSv), multidetector, ≥4 channels CXR: 1 view, PA with deep inspiration</td>
<td>Certified radiologists and technicians by appropriate boards Radiologists trained in image quality and standardized image acquisition NCN ≥4 mm were classified positive, suspicious for lung cancer Adenopathy, effusion could be positive, suspicious Other abnormal findings suggesting clinically important, nonlung cancer diagnosis reported Stability on year 2 scan could be classified as minor rather than positive</td>
<td>Results and recommendations from radiologist to subject’s community provider</td>
</tr>
<tr>
<td>Gohagan et al, 2004</td>
<td>Ages 55 to 74 years</td>
<td>Former or current smokers ≥30 pack-years who quit <10 years prior</td>
<td>LDCT vs. single PA CXR examination</td>
<td>Encouraged via study to be evaluated Diagnostic evaluation assessed by record review</td>
<td>Positive = any nodule ≥4 mm (although varied with time)</td>
</tr>
<tr>
<td>Gohagan et al, 2005</td>
<td>Ages 55 to 74 years</td>
<td>Former or current smokers ≥30 pack-years who quit <10 years prior</td>
<td>LDCT vs. single PA CXR examination</td>
<td>Encouraged via study to be evaluated Diagnostic evaluation assessed by record review</td>
<td>Positive = any nodule ≥4 mm (although varied with time)</td>
</tr>
<tr>
<td>Pinsky et al, 2005</td>
<td>Ages 55 to 74 years</td>
<td>Former or current smokers ≥30 pack-years who quit <10 years prior</td>
<td>LDCT vs. single PA CXR examination</td>
<td>Encouraged via study to be evaluated Diagnostic evaluation assessed by record review</td>
<td>Positive = any nodule ≥4 mm (although varied with time)</td>
</tr>
<tr>
<td>Croswell et al, 2010</td>
<td>Ages 55 to 74 years</td>
<td>Former or current smokers ≥30 pack-years who quit <10 years prior</td>
<td>LDCT vs. single PA CXR examination</td>
<td>Encouraged via study to be evaluated Diagnostic evaluation assessed by record review</td>
<td>Positive = any nodule ≥4 mm (although varied with time)</td>
</tr>
</tbody>
</table>
Appendix B1. Evidence Table of Included Randomized, Controlled Trials

<table>
<thead>
<tr>
<th>Author, year, title</th>
<th>Population</th>
<th>Risk group</th>
<th>Screening comparison (In vs. Co)</th>
<th>Imaging evaluation strategy</th>
<th>Suspicious abnormality finding evaluation strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detection and Screening of Early Lung Cancer by Novel Imaging Technology and Molecular Essays (DANTE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infante et al, 2009</td>
<td>Screening vs. none Mean age: 64.3 vs. 64.6 years Current smoker: 56% vs. 57% Mean pack-years: 47.3 vs. 47.2 Prior cancer (considered cured): 1.0% vs. 0.6% Respiratory comorbidity: 35% vs. 31% (p=0.04)</td>
<td>Asymptomatic male current or former smokers with ≥20 pack-years Ages 60 to 74 years</td>
<td>CT vs. annual clinical review</td>
<td>Per study protocol: Case-by-case basis for nonsmooth ≥6 but ≤10 mm lesion that has not regressed after antibiotics on repeat imaging. PET positive nonsmooth ≥10 but ≤20 mm lesion that has not regressed with antibiotics PET positive nonsmooth lesion ≥20 mm Case-by-case for focal ground glass opacities that have not responded to antibiotics or regressed on repeat imaging</td>
<td>Pursued within the study via established diagnostic protocol</td>
</tr>
<tr>
<td>Danish Lung Cancer Screening Study (DLCST)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pedersen et al, 2009</td>
<td>CT vs. control Mean age: 57.9 vs. 57.8 Mean pack-years: 36.4 vs. 35.9 Current/former smokers: 1545/507 vs. 1579/473</td>
<td>Healthy volunteer men and women ages 50 to 70 years Current and former smokers (<10 years and >4 weeks since smoking cessation) with ≥20 pack-years smoking history</td>
<td>LDCT vs. usual care</td>
<td>Imaging assessed and followup imaging within study</td>
<td>Screen-detected findings, single center affiliated with study Control group outside study, but mostly with same specialists</td>
</tr>
<tr>
<td>Saghir et al, 2012</td>
<td>CT vs. control Mean age: 57.9 vs. 57.8 Mean pack-years: 36.4 vs. 35.9 Current/former smokers: 1545/507 vs. 1579/473</td>
<td>Healthy volunteer men and women ages 50 to 70 years Current and former smokers (<10 years and >4 weeks since smoking cessation) with ≥20 pack-years smoking history</td>
<td>LDCT vs. usual care</td>
<td>All CT scans reviewed by 2 study radiologists, within study protocol</td>
<td>Referred to chest physicians for diagnostic evaluation at 2 lung cancer centers when HRCT, PET-CT, bronchoscopy, and/or biopsy performed In control group, lung cancer diagnosed and treated by the usual clinical practice, which mostly involved the same centers/strategies</td>
</tr>
</tbody>
</table>
Appendix B1. Evidence Table of Included Randomized, Controlled Trials

<table>
<thead>
<tr>
<th>Author, year, title</th>
<th>Population</th>
<th>Risk group</th>
<th>Screening comparison (In vs. Co)</th>
<th>Imaging evaluation strategy</th>
<th>Suspicious abnormality finding evaluation strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ashraf et al, 2008</td>
<td>CT vs. control</td>
<td>Healthy volunteer men and women ages 50 to 70 years</td>
<td>LDCT vs. usual care</td>
<td>Imaging assessed and followup imaging within study</td>
<td>Screen-detected findings, single center affiliated with study Control group outside study, but mostly with same specialists</td>
</tr>
<tr>
<td></td>
<td>Mean age: 57.9 vs. 57.8</td>
<td>Current and former smokers (<10 years and >4 weeks since smoking cessation) with ≥20 pack-years smoking history</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean pack-years: 36.4 vs. 35.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Current/former smokers: 1545/507 vs. 1579/473</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITALUNG</td>
<td>Mean age: 64 years (range: 55 to 69)</td>
<td>≥20 pack-years since the last 10 years (former smokers who quit >10 years ago excluded)</td>
<td>CT vs. usual care</td>
<td>5 SCT scanners (1 single row, 4 multirow detectors)</td>
<td>Negative study = no focal findings, <5 mm solid NCN, or <10 mm nonsolid nodule</td>
</tr>
<tr>
<td>Lopes Pegna et al, 2009</td>
<td>Mean age: 64 years (range: 55 to 69)</td>
<td>≥20 pack-years since the last 10 years (former smokers who quit >10 years ago excluded)</td>
<td>CT vs. usual care</td>
<td>5 SCT scanners (1 single row, 4 multirow detectors)</td>
<td>Negative study = no focal findings, <5 mm solid NCN, or <10 mm nonsolid nodule</td>
</tr>
<tr>
<td>Mascalchi et al, 2011</td>
<td>Mean age: 64 years (range: 55 to 69)</td>
<td>≥20 pack-years since the last 10 years (former smokers who quit >10 years ago excluded)</td>
<td>CT vs. usual care</td>
<td>8 SCT scanners</td>
<td>Negative study = no focal findings, <5 mm solid NCN, or <10 mm nonsolid nodule</td>
</tr>
<tr>
<td>Mascalchi et al, 2006</td>
<td>Mean age: 64 years (range: 55 to 69)</td>
<td>≥20 pack-years since the last 10 years (former smokers who quit >10 years ago excluded)</td>
<td>CT vs. usual care</td>
<td>Followed in study per ELCAP criteria</td>
<td>Negative study = no focal findings, <5 mm solid NCN, or <10 mm non-solid nodule</td>
</tr>
<tr>
<td>Multi-centric Italian Lung Detection (MILD)</td>
<td>Age ≥49 years 63% to 68% male 10% former smokers Mean pack-years: 38 to 39</td>
<td>Smokers with a smoking history >20 pack-years or quit <10 years ago</td>
<td>LDCT (annual vs. biennial) vs. usual care</td>
<td>Volumetrics used: <60 mm³ (4.8 mm) continue 1–2 year schedule 60–250 mm³ (5 to 8 mm) repeat in 3 months, if <25% increase in volume, resume 1 or 2 year schedule >250 mm³ (>8 mm) referred for evaluation, generally with PET</td>
<td>Volumetric followup of intermediate nodules PET scan for nodules >250 mm³ No further description</td>
</tr>
<tr>
<td>Pastorino et al, 2012</td>
<td>Age ≥49 years 63% to 68% male 10% former smokers Mean pack-years: 38 to 39</td>
<td>Smokers with a smoking history >20 pack-years or quit <10 years ago</td>
<td>LDCT (annual vs. biennial) vs. usual care</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix B1. Evidence Table of Included Randomized, Controlled Trials

<table>
<thead>
<tr>
<th>Author, year, title</th>
<th>Population</th>
<th>Risk group</th>
<th>Screening comparison (In vs. Co)</th>
<th>Imaging evaluation strategy</th>
<th>Suspicious abnormality finding evaluation strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nederlands- Leuvens Longkanker Screenings Onderzoek (NELSON)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>van Iersel et al, 2006<sup>77</sup> Risk-based selection from the general population in a screening trial: selection criteria, recruitment and power for the Dutch-Belgian randomised lung cancer multi-slice CT screening trial (NELSON)</td>
<td>Median age: 59 years (SD 6) 16% female</td>
<td>Asymptomatic current or former smokers with 15 cigarettes/day for >25 years or >10 cigarettes/day for >30 years smoking history, and if former smoker, quit ≤10 years ago Could have prior lung cancer if >5 years prior and not being treated</td>
<td>CT vs. no screening</td>
<td>Imaging assessment and followup dictated by the study using volumetric indices</td>
<td>Positive test: solid nodule, >500 mm<sup>3</sup> were referred to pulmonologist Positive test: solid, between 50 to 500 mm<sup>3</sup>; solid, pleural-based between 5 to 10 mm in diameter, partially solid with nonsolid component >7 mm; partially solid with solid component between 50 to 500 mm<sup>3</sup>; or nonsolid, >7 mm diameter: referred for repeat CT scan in 3 to 4 months</td>
</tr>
<tr>
<td>Xu et al, 2006<sup>64</sup> Nodule management protocol of the NELSON randomised lung cancer screening trial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>van den Bergh et al, 2009<sup>78</sup> Informed participation in a randomised controlled trial of computed tomography screening for lung cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>van Klaren et al, 2009<sup>56</sup> Management of lung nodules detected by volume CT scanning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>van den Bergh et al, 2010<sup>77</sup> Short-term health-related quality of life consequences in a lung cancer CT screening trial (NELSON)</td>
<td>Median age: 59 years (SD 6) 16% female</td>
<td>Asymptomatic current or former smokers with 15 cigarettes/day for >25 years or >10 cigarettes/day for >30 years smoking history, and if former smoker, quit ≤10 years ago Could have prior lung cancer if >5 years prior and not being treated</td>
<td>CT vs. no screening</td>
<td>Imaging assessment and followup dictated by the study using volumetric indices</td>
<td>Positive test: solid nodule, >500 mm<sup>3</sup> were referred to pulmonologist Positive test: solid, between 50 to 500 mm<sup>3</sup>; solid, pleural-based between 5 to 10 mm in diameter, partially solid with nonsolid component >7 mm; partially solid with solid component between 50 to 500 mm<sup>3</sup>; or nonsolid, >7 mm diameter: referred for repeat CT scan in 3 to 4 months</td>
</tr>
</tbody>
</table>
Appendix B1. Evidence Table of Included Randomized, Controlled Trials

<table>
<thead>
<tr>
<th>Author, year, title</th>
<th>Population</th>
<th>Risk group</th>
<th>Screening comparison (In vs. Co)</th>
<th>Imaging evaluation strategy</th>
<th>Suspicious abnormality finding evaluation strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>van den Bergh et al, 2011[^1] Long-term effects of lung cancer computed tomography screening on health-related quality of life: the NELSON trial</td>
<td>Median age: 59 years (SD 6), 16% female</td>
<td>Asymptomatic current or former smokers with 15 cigarettes/day for >25 years or >10 cigarettes/day for >30 years smoking history, and if former smoker, quit <10 years ago Could have prior lung cancer if >5 years prior and not being treated</td>
<td>CT vs. no screening</td>
<td>Imaging assessment and followup dictated by the study using volumetric indices</td>
<td>Positive test: solid nodule, >500 mm^3^ were referred to pulmonologist Positive test: solid, between 50 to 500 mm^3^; solid, pleural-based between 5 to 10 mm in diameter, partially solid with nonsolid component >7 mm; partially solid with solid component between 50 to 500 mm^3^; or nonsolid, >7 mm diameter: referred for repeat CT scan in 3 to 4 months</td>
</tr>
<tr>
<td>Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Croswell et al, 2009[^2] Cumulative incidence of false-positive results in repeated, multimodal cancer screening</td>
<td>CXR vs. usual care Men: 50% vs. 50% White: 86% vs. 85% Current smokers: 10% vs. 10% Former smokers: 42% vs. 42% Never smokers: 45% vs. 44% NLST eligible: 20% vs. 21% Family history: 11% vs. 11% Those with ≥30 pack-year smoking history; current smokers or quit <15 years ago</td>
<td>CXR vs. usual care</td>
<td>Advised to seek diagnostic evaluation which was decided outside of study; study obtained their records Participants/health care providers notified of results and evaluation determined by patient with provider</td>
<td>Positive result = nodule, mass, infiltrate, or other abnormality suspicious for lung cancer</td>
<td></td>
</tr>
<tr>
<td>Hocking et al, 2010[^3] Lung cancer screening in the randomized Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial</td>
<td>CXR vs. usual care Men: 50% vs. 50% White: 86% vs. 85% Current smokers: 10% vs. 10% Former smokers: 42% vs. 42% Never smokers: 45% vs. 44% NLST eligible: 20% vs. 21% Family history: 11% vs. 11% Those with ≥30 pack-year smoking history; current smokers or quit <15 years ago</td>
<td>CXR vs. usual care</td>
<td>Advised to seek diagnostic evaluation which was decided outside of study; study obtained their records Participants/health care providers notified of results and evaluation determined by patient with provider</td>
<td>Positive result = nodule, mass, infiltrate, or other abnormality suspicious for lung cancer</td>
<td></td>
</tr>
</tbody>
</table>
Appendix B1. Evidence Table of Included Randomized, Controlled Trials

<table>
<thead>
<tr>
<th>Author, year, title</th>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
<th>Number of subjects</th>
<th>Country and setting</th>
<th>Sponsor</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Lung Screening Trial (NLST)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Lung Screening Trial Research Team et al, 2011</td>
<td>Asymptomatic men and women ages 55 to 74 years with ≥30 pack-year smoking history and if former smoker quit ≤15 years ago</td>
<td>Hemoptysis or unexplained >15 lb weight loss in preceding year, chest CT within 18 months</td>
<td>Number approached: NR Number eligible: NR Number enrolled: 53,454 (26,722 vs. 26,732)</td>
<td>United States Multicenter (10 LSS centers and 23 ACRIN centers)</td>
<td>NCI</td>
</tr>
<tr>
<td>Lung Screening Study (LSS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gohagan et al, 2004*</td>
<td>Men and women ages 55 to 74 years with ≥30 pack-year smoking history and quit during <10 years</td>
<td>Prior lung cancer, prior lung surgery, prior chest CT ≤2 years, current treatment for any cancer (other than nonmelanoma skin cancer), participation in another lung cancer screening trial</td>
<td>Number approached: 653,417 Number eligible: 4828 Number enrolled: 3318 (1660 vs. 1658)</td>
<td>6 centers in United States</td>
<td>NCI</td>
</tr>
<tr>
<td>Gohagan et al, 2005*</td>
<td>Men and women ages 55 to 74 years with ≥30 pack-year smoking history and quit during <10 years</td>
<td>Prior lung cancer, prior lung surgery, prior chest CT ≤2 years, current treatment for any cancer (other than nonmelanoma skin cancer), participation in another lung cancer screening trial</td>
<td>Number approached: 653,417 Number eligible: 4828 Number enrolled: 3318 (1660 vs. 1658) Number at 1 year: 2715 (1398 vs. 1317)</td>
<td>6 centers in United States</td>
<td>NCI</td>
</tr>
<tr>
<td>Pinsky et al, 2005*</td>
<td>Men and women ages 55 to 74 years with ≥30 pack-year smoking history and quit during <10 years</td>
<td>Prior lung cancer, prior lung surgery, prior chest CT ≤2 years, current treatment for any cancer (other than nonmelanoma skin cancer), participation in another lung cancer screening trial</td>
<td>Number approached: 653,417 Number eligible: 4828 Number enrolled: 3318 (1660 vs. 1658) Number at 1 year: 2715 (1398 vs. 1317)</td>
<td>6 centers in United States</td>
<td>NCI</td>
</tr>
</tbody>
</table>
Appendix B1. Evidence Table of Included Randomized, Controlled Trials

<table>
<thead>
<tr>
<th>Author, year, title</th>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
<th>Number of subjects</th>
<th>Country and setting</th>
<th>Sponsor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Croswell et al, 2010</td>
<td>Men and women ages 55 to 74 years with ≥30 pack-year smoking history and quit during <10 years</td>
<td>Prior lung cancer, prior lung surgery, prior chest CT ≤2 years, current treatment for any cancer (other than nonmelanoma skin cancer), participation in another lung cancer screening trial</td>
<td>Number approached: 653,417 Number eligible: 4828 Number enrolled: 3318 (1660 vs. 1658) Number analyzed: 3190 (1610 vs. 1580)</td>
<td>6 centers in United States</td>
<td>NCI</td>
</tr>
<tr>
<td>Detection and Screening of Early Lung Cancer by Novel Imaging Technology and Molecular Essays (DANTE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infante et al, 2009</td>
<td>Male current or former smokers with a history of ≥20 pack-years and ages 60 to 74 years</td>
<td>Comorbid conditions carrying a life expectancy of <5 years, a history of previous malignancy treated within 10 years before accrual (exceptions allowed for early laryngeal cancer and nonmelanoma skin cancer if 5-year disease free interval met), or if unable to comply with the followup protocol for any reason</td>
<td>Number approached: 2811 (1403 vs. 1408) Number enrolled: 2472 patients (1276 vs. 196)</td>
<td>Italy, 3 hospitals from same hospital network</td>
<td>Italian Association for the Fight Against Cancer (donations from benefactors and charities directed at financing the study)</td>
</tr>
<tr>
<td>Danish Lung Cancer Screening Study (DLCST)</td>
<td>Current or former smokers with a history of ≥20 pack-years, ages 50 to 70 years Former smokers who quit smoking after age 50 years and <10 years ago, able to climb 2 flights of stairs without pausing, PFT baseline forced expiratory volume-1 was ≥30% of predicted normal</td>
<td>Body weight >130 kg; previous treatment for lung cancer, breast cancer, malignant melanoma, or hypernephroma; history of any other cancer within previous 5 years; tuberculosis within 2 years; any other serious illness that would shorten life expectancy to <10 years</td>
<td>Number approached: 5861 Number eligible: NR Number enrolled: 4104 (2052 vs. 2052)</td>
<td>Denmark, single site University Hospital, enrolled from October 2004 to March 2006</td>
<td>Danish Ministry of Interior and Health</td>
</tr>
<tr>
<td>Saghir et al, 2012</td>
<td>Current or former smokers with a history of ≥20 pack-years, ages 50 to 70 years Former smokers who quit smoking after age 50 years and <10 years ago, able to climb 2 flights of stairs without pausing, PFT baseline forced expiratory volume-1 was ≥30% of predicted normal</td>
<td>Body weight >130 kg; previous treatment for lung cancer, breast cancer, malignant melanoma, or hypernephroma; history of any other cancer within previous 5 years; tuberculosis within 2 years; any other serious illness that would shorten life expectancy to <10 years</td>
<td>Number approached: 5861 Number eligible: NR Number enrolled: 4104 (2052 vs. 2052)</td>
<td>Denmark, single site University Hospital, enrolled from October 2004 to March 2006</td>
<td>Danish Ministry of Interior and Health</td>
</tr>
</tbody>
</table>
Appendix B1. Evidence Table of Included Randomized, Controlled Trials

<table>
<thead>
<tr>
<th>Author, year, title</th>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
<th>Number of subjects</th>
<th>Country and setting</th>
<th>Sponsor</th>
</tr>
</thead>
</table>
| Ashraf et al, 2008[^2]
Smoking habits are unaffected by CT screening at 1-year follow-up in the Danish Lung Cancer Screening Trial | Current or former smokers with history of ≥20 pack-years, ages 50 to 70 years
Former smokers who quit smoking after age 50 years and <10 years ago, able to climb 2 flights of stairs without pausing, PFT baseline forced expiratory volume-1 was ≥30% of predicted normal | Body weight >130 kg; previous treatment for lung cancer, breast cancer, malignant melanoma, or hypernephroma; history of any other cancer within previous 5 years; tuberculosis within 2 years; any other serious illness that would shorten life expectancy to <10 years | Number approached: 5861
Number eligible: NR
Number enrolled: 4104 (2052 vs. 2052) | Denmark, single site University Hospital, enrolled from October 2004 to March 2006 | Government grant |

ITALUNG

<table>
<thead>
<tr>
<th>Author, year, title</th>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
<th>Number of subjects</th>
<th>Country and setting</th>
<th>Sponsor</th>
</tr>
</thead>
</table>
| Lopes Pegna et al, 2009[^7]
Design, recruitment and baseline results of the ITALUNG trial for lung cancer screening with low-dose CT | ≥20 pack-years since the last 10 years | History of cancer and inability to tolerate lung cancer resection surgery, former smokers who quit >10 years ago | Number approached: 71,232
Number eligible: NR
Number enrolled: 1613 (1406 vs. 1593) | Italy, general population | Regional Health Public Authority |

<table>
<thead>
<tr>
<th>Author, year, title</th>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
<th>Number of subjects</th>
<th>Country and setting</th>
<th>Sponsor</th>
</tr>
</thead>
</table>
Dose exposure in the ITALUNG trial of lung cancer screening with low-dose CT | ≥20 pack-years since the last 10 years | History of cancer and inability to tolerate lung cancer resection surgery, former smokers who quit >10 years ago | Number approached: 71,232
Number eligible: NR
Number enrolled: 1613 (1406 vs. 1593) | Italy, general population | Regional Health Public Authority |

<table>
<thead>
<tr>
<th>Author, year, title</th>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
<th>Number of subjects</th>
<th>Country and setting</th>
<th>Sponsor</th>
</tr>
</thead>
</table>
| Mascalchi et al, 2006[^1]
Risk–benefit analysis of x-ray exposure associated with lung cancer screening in the ITALUNG-CT trial | ≥20 pack-years since the last 10 years | History of cancer and inability to tolerate lung cancer resection surgery, former smokers who quit >10 years ago | Number approached: NR
Number eligible: NR
Number analyzed: 60 (210 CT scans) | Italy, general population | Health Department of the Region of Tuscany, Italian League Against Tumors, and the Ministry of Education, Universities, and Research |

Multi-centric Italian Lung Detection (MILD)

<table>
<thead>
<tr>
<th>Author, year, title</th>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
<th>Number of subjects</th>
<th>Country and setting</th>
<th>Sponsor</th>
</tr>
</thead>
</table>
| Pastorino et al, 2012[^2]
Annual or biennial CT screening versus observation in heavy smokers: 5-year results of the MILD trial | Smokers ages ≥49 years with ≥20 pack-year smoking history or if former smoker quit <10 years ago | History of cancer in past 5 years | Number approached: NR
Number eligible: NR
Number enrolled: 4099 (1190 vs. 1186 vs. 1723) | Single institution, Milan | Foundations and Ministry of Health |
Appendix B1. Evidence Table of Included Randomized, Controlled Trials

<table>
<thead>
<tr>
<th>Author, year, title</th>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
<th>Number of subjects</th>
<th>Country and setting</th>
<th>Sponsor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nederlands-Leuvens Longkanker Screenings Onderzoek (NELSON)</td>
<td>Men born between 1928 and 1956 who smoked >15 cigarettes/day during >25 years or smoked >10 cigarettes/day during >30 years, current or former smokers who quit smoking ≤10 years ago</td>
<td>Moderate or bad self-reported health who were unable to climb 2 flights of stairs; body weight ≥140 kg; current or past renal cancer, melanoma, or breast cancer; lung cancer diagnosed <5 years ago or ≥5 years ago but still under treatment; chest CT examination <1 year before starting study</td>
<td>Number approached: 548,489 Number eligible: NR Number enrolled: 15,822 (7907 vs. 7915)</td>
<td>Belgium, the Netherlands, Denmark</td>
<td>Netherlands Organisation of Health Research and Development, Dutch Cancer Society, Health Insurance Innovation Foundation, Siemens Germany, Roche Diagnostics, G. Ph. Verhagen Stichting, Rotterdam Oncologic Thoracic Study Group, Erasmus Trust Fund, Stichting tegen Kanker, Vlaamse Liga tegen Kanker, and LOGO Leuven</td>
</tr>
<tr>
<td>van Iersel et al, 2006</td>
<td>Risk-based selection from the general population in a screening trial: selection criteria, recruitment and power for the Dutch-Belgian randomised lung cancer multi-slice CT screening trial (NELSON)</td>
<td>Xu et al, 2006</td>
<td>64</td>
<td>Nodule management protocol of the NELSON randomised lung cancer screening trial</td>
<td></td>
</tr>
<tr>
<td>van den Bergh et al, 2009</td>
<td>Informed participation in a randomised controlled trial of computed tomography screening for lung cancer</td>
<td>van Klaveren et al, 2009</td>
<td>78</td>
<td>Management of lung nodules detected by volume CT scanning</td>
<td></td>
</tr>
<tr>
<td>van den Bergh et al, 2010</td>
<td>Short-term health-related quality of life consequences in a lung cancer CT screening trial (NELSON)</td>
<td>Men born between 1928 and 1956 who smoked >15 cigarettes/day during >25 years or smoked >10 cigarettes/day during >30 years, current or former smokers who quit smoking ≤10 years ago Consecutive sample of 733 patients in CT group sent surveys on health related quality of life</td>
<td>Moderate or bad self-reported health who were unable to climb 2 flights of stairs; body weight ≥140 kg; current or past renal cancer, melanoma, or breast cancer; lung cancer diagnosed <5 years ago or ≥5 years ago but still under treatment; chest CT examination <1 year before starting study</td>
<td>Number approached: 692 sent 1st survey, 685 sent 2nd survey, 667 sent 3rd survey, 684 sent 4th survey Number eligible: NR Number enrolled: 630 returned 1st survey, 641 returned 2nd survey, 620 returned 3rd survey, 600 returned 4th survey</td>
<td>The Netherlands/Belgium</td>
</tr>
</tbody>
</table>
Appendix B1. Evidence Table of Included Randomized, Controlled Trials

<table>
<thead>
<tr>
<th>Author, year, title</th>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
<th>Number of subjects</th>
<th>Country and setting</th>
<th>Sponsor</th>
</tr>
</thead>
<tbody>
<tr>
<td>van den Bergh et al, 2011<sup>1</sup> Long-term effects of lung cancer computed tomography screening on health-related quality of life: the NELSON trial</td>
<td>Men born between 1928 and 1956 who smoked >15 cigarettes/day during >25 years or smoked >10 cigarettes/day during >30 years, current or former smokers who quit smoking ≤10 years ago. Consecutive sample of 733 patients in CT group sent surveys on health related quality of life.</td>
<td>Moderate or bad self-reported health who were unable to climb 2 flights of stairs; body weight ≥140 kg; current or past renal cancer, melanoma, or breast cancer; lung cancer diagnosed ≤5 years ago or ≥5 years ago but still under treatment; chest CT examination <1 year before starting study.</td>
<td>Number approached: 1466 sent 1st survey, 684 sent 2nd survey, 1180 sent 3rd survey, 684 sent 4th survey.</td>
<td>The Netherlands/Belgium</td>
<td>LOGO Leuven</td>
</tr>
<tr>
<td>Croswell et al, 2009<sup>2</sup> Cumulative incidence of false-positive results in repeated, multimodal cancer screening</td>
<td>Men and women ages 55 to 74 years, eligible for NLST</td>
<td>History of a PLCO cancer, prior pneumonectomy, current cancer treatment.</td>
<td>Number approached: NR. Number eligible: NR. Number enrolled: 154,901 (77,445 vs. 77,456). Number with false-positives in intervention: 11,851 (6320 men and 5531 women).</td>
<td>10 centers</td>
<td>NCI</td>
</tr>
</tbody>
</table>

Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial

<table>
<thead>
<tr>
<th>Author, year, title</th>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
<th>Number of subjects</th>
<th>Country and setting</th>
<th>Sponsor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Croswell et al, 2009<sup>2</sup> Cumulative incidence of false-positive results in repeated, multimodal cancer screening</td>
<td>Men and women ages 55 to 74 years, eligible for NLST</td>
<td>History of a PLCO cancer, prior pneumonectomy, current cancer treatment.</td>
<td>Number approached: NR. Number eligible: NR. Number enrolled: 154,901 (77,445 vs. 77,456). Number with false-positives in intervention: 11,851 (6320 men and 5531 women).</td>
<td>10 centers</td>
<td>NCI</td>
</tr>
</tbody>
</table>
Appendix B1. Evidence Table of Included Randomized, Controlled Trials

<table>
<thead>
<tr>
<th>Author, year, title</th>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
<th>Number of subjects</th>
<th>Country and setting</th>
<th>Sponsor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hocking et al, 2010<sup>52</sup></td>
<td>Men and women ages 55 to 74 years, eligible for NLST</td>
<td>History of a PLCO cancer, prior pneumonectomy, current cancer treatment</td>
<td>Number approached: NR
Number eligible: NR
Number enrolled: 154,901 (77,445 vs. 77,456)
Number with false-positives in intervention: 11,851 (6320 men and 5531 women)</td>
<td>10 centers</td>
<td>NCI</td>
</tr>
</tbody>
</table>

Results

<table>
<thead>
<tr>
<th></th>
<th>Intervention</th>
<th>Control</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Lung Screening Trial (NLST)</td>
<td>Lung cancer mortality: 356 (247/100,000 py); RR, 20% (95% CI, 6.8 to 27%)</td>
<td>Lung cancer mortality: 443 (309/100,000 py)</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>Overall mortality: 1877; RR, 6.7% (95% CI, 1.2 to 14%)</td>
<td>Overall mortality: 1998</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adherence to screening: 93%</td>
<td>Adherence to screening: 93%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Positive screen (T0, T1, T2, total patients): 27%, 28%, 17%, 39%</td>
<td>Positive screen (T0, T1, T2, total patients): 9.2%, 6.2%, 5.0%, 16%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Incidence: 1060 (645/100,000 py)</td>
<td>Incidence: 941 (572/100,000 py)</td>
<td></td>
</tr>
<tr>
<td>Lung Screening Study (LSS)</td>
<td>Positive: 325/1586
Any procedure: 309
Clinical evaluation: 244
Comparison with prior: 155
Chest CT: 232
CXR: 92
PFT: 73
Any invasive procedure: 53
Lung cancer: 30
Lung cancer incidence: 1.9%
Stage I: 16 (53%)
Stage IV: 3 (10%)
Adenocarcinoma: 19 (63%)</td>
<td>Positive: 152/1550
Any procedure: 140
Clinical evaluation: 71
Comparison with prior: 71
Chest CT: 76
CXR: 88
PFT: 20
Any invasive procedure: 15
Lung cancer: 7
Lung cancer incidence: 0.5%
Stage I: 6 (86%)
Stage IV: 0
Adenocarcinoma: 3 (43%)</td>
<td>Baseline:
PPV CXR or CT: 9.2%
CT: 30 lung cancers and 325 positive exams
CXR: 7 lung cancers and 152 positive exams
Sensitivity: NR at baseline</td>
</tr>
</tbody>
</table>
Appendix B1. Evidence Table of Included Randomized, Controlled Trials

<table>
<thead>
<tr>
<th>Author, year, title</th>
<th>Intervention</th>
<th>Results</th>
<th>Control</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinsky et al, 2005<sup>b</sup> Diagnostic procedures after a positive spiral computed tomography lung carcinoma screen</td>
<td>After 1st positive screen (n=522) Highest level procedure Biopsy/resection: 63 (12%) Invasive procedure without resection: 5 (1%) Chest CT: 287 (55%) Other (PET/MRI): 10 (2%) PFT/sputum cytology: 31 (6%) CXR: 26 (5%) Comparison with other imaging: 63 (12%) Clinical exam: 21 (4%) No evaluation: 16 (3%) Findings Lung cancer: 37 Other lung diseases: 114 COPD/emphysema: 59 Pulmonary fibrosis: 31 Renal cancer: 1</td>
<td>NR</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Croswell et al, 2010<sup>c</sup> Cumulative incidence of false-positive test results in lung cancer screening</td>
<td>Received ≥1 false-positive: 506 (31%) Baseline risk false-positive: 21% 1st incident screen false-positive: 33%</td>
<td>Received ≥1 false-positive: 216 (14%) Baseline risk false-positive: 9% 1st incident screen false-positive: 15% Baseline false-negative: 4</td>
<td>NR</td>
<td></td>
</tr>
</tbody>
</table>
Appendix B1. Evidence Table of Included Randomized, Controlled Trials

<table>
<thead>
<tr>
<th>Author, year, title</th>
<th>Intervention</th>
<th>Results</th>
<th>Control</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detection and Screening of Early Lung Cancer by Novel Imaging Technology and Molecular Essays (DANTE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infante et al, 2009<sup>27</sup></td>
<td>All-cause mortality: 46 (3.6%)
Lung cancer mortality: 20 (1.6%)
Other mortality causes: 26 (2.0%)
Patients with lung cancers: 60 (4.7%)
Total number of lung cancers: 63 (4.9%)
Stage IA: 20 (1.6%)
Stage I: 33 (2.6%)
Stage II: 4 (0.3%)
Stage IIIA: 7 (0.6%)
Stage IIIB: 6 (0.5%)
Stage IV: 11 (0.9%)
Any abnormality on CT or CXR: 351 (28%)
Diagnostic PET: 57 (4.5%)
Any investigation: 226 (18%)
Any invasive procedure: 96 (7.5%)
Histology: 6 (0.5%)
Small cell: 57 (4.4%)</td>
<td>All-cause mortality: 45 (3.8%) p=0.83
Lung cancer mortality: 20 (1.7%) p=0.84
Other mortality causes: 25 (2.1%) p=0.93
Patients with lung cancers: 34 (2.8%) p=0.02
Total number of lung cancers: 36 (3.0%)
Stage IA: 4 (0.3%)
Stage I: 12 (1.0%) p=0.004
Stage II: 2 (0.2%)
Stage IIIA: 4 (0.3%)
Stage IIIB: 3 (0.3%)
Stage IV: 14 (1.2%)
Any abnormality on CT or CXR: 22 (1.8%)
Diagnostic PET: 153 (13%) p=0.001
Any investigation: 36 (3.0%) p<0.0001
Any invasive procedure: 2 (0.2%)
Histology: 34 (2.8%)
Small cell: NR</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Danish Lung Cancer Screening Study (DLCST)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pedersen et al, 2009<sup>36</sup></td>
<td>Prevalence round LDCT</td>
<td>NR</td>
<td>NR in study 189/2052 (9.2%) with study requiring followup 17 cases of lung cancer detected 7.9% false-positive</td>
<td></td>
</tr>
<tr>
<td>Saghir et al, 2012<sup>29</sup></td>
<td>Overall
69 lung cancers
3 small cell
66 NSCLC
44 stage I or II
21 stage III or IV
53 pathologically identified within 1 year of CT first seen on
1 interval cancer
Deaths: 61 (3.0%)
Lung cancer death: 15 (0.7%)
All 5 rounds
1029 nodules
560 baseline
469 incidence
611 individuals with nodules/5 years
198 (of 9800 scans) referred for diagnostic evaluation
7 VATS benign
Baseline false-positive rate: 7.9%</td>
<td>24 lung cancers
6 extensive SCLC
17 NSCLC
8 stage I or II
16 stage III or IV
Deaths: 42 (2.1%); p=0.059
Lung cancer death: 11 (0.5%); p=0.42</td>
<td>NR</td>
<td>1 interval cancer diagnosed after 3rd incidence screen</td>
</tr>
</tbody>
</table>
Appendix B1. Evidence Table of Included Randomized, Controlled Trials

<table>
<thead>
<tr>
<th>Author, year, title</th>
<th>Intervention</th>
<th>Results</th>
<th>Control</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual false-positive rate range: 1.6% to 2.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Ashraf et al, 2008²²
Smoking habits are unaffected by CT screening at 1-year follow-up in the Danish Lung Cancer Screening Trial | Quit rate: 174/1545
Relapse rate: 85/507 | Quit rate: 165/1579
Relapse rate: 98/473 | | NR |

ITALUNG

<table>
<thead>
<tr>
<th>Author, year, title</th>
<th>Intervention</th>
<th>Results</th>
<th>Control</th>
<th>Sensitivity</th>
</tr>
</thead>
</table>
| Lopes Pegna et al, 2009²⁷
Design, recruitment and baseline results of the ITALUNG trial for lung cancer screening with low-dose CT | 639 nodules in 426 subjects
366 followup CT, 4/5 with increased nodule size had PET
59 had PET, bronchus in 18
16 FNA biopsy in 15 subjects
12 FNA biopsy positive for lung cancer, 2 indeterminate (later lung cancer), 1 benign
20 with lung cancer, 1 with 2 primary
NSCLC: 86%; 10 stage I, 8 stage IA
17 cancer in 16 subjects surgically resected; 1 resection for a benign lesion
16 had cancer after baseline screen
5 had cancer after 1 year followup | NR | NR |
| Mascalchi et al, 2011²³
Dose exposure in the ITALUNG trial of lung cancer screening with low-dose CT | 1406 baseline CT
3924 annual screen CT
990 followup CT for 6320 total
879 of 6320 scans on single-detector
95 PETs for 90 patients
59 suspicious nodules at baseline, 36 during annual screen
38 CT-guided biopsies in 34 patients
Mean collective effective dose: 8.75 Sv to 9.36 Sv
Mean effective dose per patient over 4 years: 6.2 mSv to 6.8 mSv
Mean number of radiation-induced cancers: 0.12 to 0.33 per 1000 patients (0.12 to 0.13 per 1000 men; 0.31 to 0.33 per 1000 women) | NR | NR |
| Mascalchi et al, 2006²⁴
Risk–benefit analysis of x-ray exposure associated with lung cancer screening in the ITALUNG-CT trial | Actual radiation dose:
Multidetector CT: 0.49 mSv/year
Single-slice CT: 1.9 mSv/year
Projected radiation dose in full ITALUNG (assumed 10% of subjects would have indeterminate nodules):
Multidetector CT: 0.83 mSv/year
Single-slice CT: 1.78 mSv/year
Lung cancer risk from radiation:
Multidetector CT: 11.7/100,000
Single-slice CT: 24.9/100,000 | NR | NA |
Appendix B1. Evidence Table of Included Randomized, Controlled Trials

<table>
<thead>
<tr>
<th>Author, year, title</th>
<th>Intervention</th>
<th>Control</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-centric Italian Lung Detection (MILD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pastorino et al, 2012<sup>22</sup></td>
<td>Positive baseline CT: 177 vs. 158</td>
<td>Lung cancer incidence: 20 (216/100,000 py)</td>
<td>NR</td>
</tr>
<tr>
<td>Annual or biennial CT screening versus observation in heavy smokers: 5-year results of the MILD trial</td>
<td>Recall rates: 14% vs. 15%</td>
<td>Stage IA lung cancer: NR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lung cancer incidence: 34 (662/100,000 py) vs. 25 (457/100,000 py)</td>
<td>Stage IV lung cancer: NR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stage IA lung cancer: 59% vs. 55%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stage IV lung cancer: 17% vs. 15%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nederlands-Leuvens Longkanker Screenings Onderzoek (NELSON)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>van Iersel et al, 2006<sup>75</sup></td>
<td>Overall 127 (1.6%) diagnosed with lung cancer</td>
<td>For diagnosis of lung cancer</td>
<td></td>
</tr>
<tr>
<td>Risk-based selection from the general population in a screening trial: selection criteria, recruitment and power for the Dutch-Belgian randomised lung cancer multi-slice CT screening trial (NELSON)</td>
<td>3 with interval diagnosis between round 1 and 2 Round 1</td>
<td>Round 1: 95% (95% CI, 87 to 98)</td>
<td></td>
</tr>
<tr>
<td>Xu et al, 2006<sup>64</sup></td>
<td>Negative scan: 5987 (79%)</td>
<td>Round 2: 96% (95% CI, 87 to 99)</td>
<td></td>
</tr>
<tr>
<td>Nodule management protocol of the NELSON randomised lung cancer screening trial</td>
<td>Indeterminate scan: 1451 (19%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>van den Bergh et al, 2009<sup>76</sup></td>
<td>Positive scan: 119 (1.6%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Informed participation in a randomised controlled trial of computed tomography screening for lung cancer</td>
<td>Total positive after followup imaging: 196 (2.6%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>van Klaveren et al, 2009<sup>56</sup></td>
<td>70 (35%) with diagnosis of lung cancer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management of lung nodules detected by volume CT scanning</td>
<td>Round 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>van den Bergh et al, 2010<sup>77</sup></td>
<td>Negative scan: 6719 (92%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short-term health-related quality of life consequences in a lung cancer CT screening trial (NELSON)</td>
<td>Indeterminate scan: 480 (6.6%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Positive scan: 90 (1.2%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total positive after followup imaging: 128 (1.8%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>54 (42%) with diagnosis of lung cancer Combining both rounds</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Positive scan: 209 (2.7 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean scores (total, negative result, indeterminate) HROQOL: SF-12 T0 vs. T3</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SF-12 PCS: 49.5 vs. 50.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neg: 49.7 vs. 50.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ind: 48.5 vs. 48.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SF-12 MCS: 51.9 vs. 51.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neg: 51.9 vs. 51.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ind: 51.8 vs. 51.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EuroQOL (EQ)-5D T0 vs. T1 vs. T2 vs. T3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EQ-5D: 79.3 vs. 78.3 vs. 79.1 vs. 78.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neg: 79.4 vs. 78.7 vs. 79.4 vs. 79.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ind: 79.1 vs. 76.8 vs. 78.3 vs. 75.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>STAI-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>STAI-6: 33.2 vs. 34.6 vs. 32.7 vs. 33.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Screening for Lung Cancer 222 Pacific Northwest EPC
Appendix B1. Evidence Table of Included Randomized, Controlled Trials

<table>
<thead>
<tr>
<th>Author, year, title</th>
<th>Results</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intervention</td>
<td>Control</td>
</tr>
<tr>
<td>Neg: 33.1 vs. 34.4 vs. 32.5 vs. 32.6 Ind: 33.6 vs. 35.2 vs. 33.5 vs. 34.8 IES IES-D: 4.2 vs. 5.9 vs. 4.5 vs. 3.6 Neg: 4.1 vs. 5.8 vs. 4.5 vs. 2.4 Ind: 4.5 vs. 6.3 vs. 4.9 vs. 8.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>van den Bergh et al, 2011</td>
<td>At T0 and T2 no significant differences in HRQOL scores over time between groups or between the indeterminate or negative 2nd-round screening. There was a temporary increase in IES scores after an indeterminate baseline result: T0: mean 4.0 (95% CI, 2.8 to 5.3) T1: mean 7.8 (95% CI, 6.5 to 9.0) T2: mean 4.5 (95% CI, 3.3 to 5.8) At 2-year followup, the HRQOL of screened subjects was similar to that of control subjects, the unfavorable short-term effects of an indeterminate baseline screening result had resolved, and an indeterminate result at the 2nd screening round had no impact on HRQOL</td>
<td>NR</td>
</tr>
<tr>
<td>Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial</td>
<td>Cumulative incidence-false positive (men vs. women) Underwent repeated screening: 3216 vs. 2907 Underwent other imaging: 1466 vs. 1498 Underwent minimally invasive procedure: 52 vs. 56 Underwent moderately invasive procedure: 77 vs. 93 Underwent major surgical procedure: 35 vs. 40 Cumulative risk false-positive after 4 screens: 22% vs. 22%</td>
<td>NR</td>
</tr>
<tr>
<td>Croswell et al, 2009</td>
<td>Positive scans: 7.5% Lung cancer diagnosis: 306 (284 NSCLC) 147 interval 62 among nonscreened PPV: 1.7%</td>
<td>Calculated: 66% for NSCLC</td>
</tr>
<tr>
<td>Hocking et al, 2010</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix B1. Evidence Table of Included Randomized, Controlled Trials

<table>
<thead>
<tr>
<th>Author, year, title</th>
<th>Intervention</th>
<th>Results</th>
<th>Control</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Lung Screening Trial Research Team et al, 2011</td>
<td>Positive CXRs: Baseline: 8.9% Round 1: 7.1% Round 2: 6.6% Round 3: 7.0% Cumulative lung cancer: 7.5% Lung cancer incidence: 20.1/10,000 py Screening period # lung cancer: 505 (307 screen-detected) Interval: 198 (39%) Lung cancer never screened: 193 (during screening period) 13 years followup: 1696 cancers (307 screen-detected) Lung cancers diagnosed after screening ended: 998 Stage I: 32% Stage III or IV: 373/1696 (22%) Cumulative death: 1213 Cumulative incidence: 14/100,000 py Lung cancer mortality: RR, 0.99 (95% CI, 0.87 to 1.22) Lung cancer mortality women: RR, 0.92 (95% CI, 0.81 to 1.06) Lung cancer mortality men: RR, 1.02 (95% CI, 0.92 to 1.13) RR late-stage lung cancer after 6 years: 0.88 (95% CI, 0.78 to 0.99) RR late-stage lung cancer after 7 years: 0.94 (95% CI, 0.84 to 1.05) Other deaths: 12% Among the NLST eligible group RR lung cancer: 1.0 (95% CI, 0.89 to 1.13) RR lung cancer death: 0.94 (95% CI, 0.81 to 1.10) Restricting analysis to lung cancer diagnosis within 6 years of screening Lung cancer mortality: RR, 0.89 (95% CI, 0.80 to 1.00) Lung cancer: 518 Lung cancer deaths: 316 Cumulative incidence lung cancer: 606/100,000 py Cumulative lung cancer mortality: 383/100,000 py</td>
<td>Lung cancer incidence: 19.2/10,000 py Stage I: 27% Stage III or IV: 895/1620 (55%) Cumulative death: 1230 Cumulative lung cancer mortality: 14.2/100,000 py Other deaths: 12% Lung cancer: 520 Lung cancer deaths: 334 Cumulative incidence lung cancer: 608/100,000 py Cumulative lung cancer mortality: 383/100,000 py</td>
<td>307/505 during screening period</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: ACRIN = American College of Radiology Imaging Network; ARDS = acute respiratory distress syndrome; CI = confidence interval; Co = control group; COPD = chronic obstructive pulmonary disease; CT = computed tomography; CXR = chest x-ray; DANTE = Detection and Screening of Early Lung Cancer by Novel Imaging Technology and Molecular Essays; DLCST = Danish Lung Cancer Screening Trial; DVT = deep venous thrombosis; EBUS = endobronchial ultrasound; ELCAP = Early Lung Cancer Action Program; EUS = endoscopic ultrasound; FNA = fine needle aspiration; HRCT = high-resolution computed tomography; HRQOL = health-related quality of life; IES = Impact of Event Scale; In = intervention; LDCT = low-dose computed tomography; LSS = Lung Screening Study; MCS = Mental Health Composite Score; MILD = Multi-centric Italian Lung Detection; MRI = magnetic resonance imaging; NA = not applicable; NCI = National Cancer Institute; NCN = noncalcified nodule; NELSON = Nederlands-Leuvens Longkanker Screenings Onderzoek; NLST = National Lung Screening Trial; NSCLC = non-small cell lung cancer; NR = not reported; PA = posteranterior; PCS = Physical Health Composite Scores;
Appendix B1. Evidence Table of Included Randomized, Controlled Trials

PET = positron emission tomography; PFT = pulmonary function testing; PLCO = Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial; PPV = positive predictive value; py = person-years; RR = relative risk; SCLC = small-cell lung cancer; SCT = spiral computed tomography; SD = standard deviation; SF-12 = 12-item Health Survey; STAI = Spielberger State-Trait Anxiety Inventory; sV = short volume; VATS = video-assisted thoracic surgery
Appendix B2. Quality Rating Table of Included Studies

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NLST</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Mortality outcome: Yes</td>
<td>No</td>
<td>Incidence outcome: No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>NIH</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>DANTE</td>
<td>Yes</td>
<td>Unclear, allocation concealment reported but participants randomized during phone interview</td>
<td>No, 35% with pulmonary problems in LDCT and 31% in controls</td>
<td>No, nearly twice the dropout rate in the controls vs. LDCT (166 vs. 91)</td>
<td>Yes</td>
<td>Unclear</td>
<td>NR</td>
<td>No</td>
<td></td>
<td>No</td>
<td>Yes</td>
<td>Unclear</td>
<td>Italian Association for the Fight Against Cancer</td>
<td>Fair (only men)</td>
<td>Fair</td>
<td>Fair</td>
</tr>
<tr>
<td>DLCST</td>
<td>Yes</td>
<td>Unclear</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Unclear</td>
<td>NR</td>
<td>No</td>
<td></td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Government grant</td>
<td>Good</td>
<td>Fair</td>
<td>Fair</td>
</tr>
<tr>
<td>MILD</td>
<td>Probably not</td>
<td>Yes</td>
<td>No; more obstructive pulmonary disease among LDCT compared with controls (81% vs. 72%), more current smokers in the control groups (90% vs. 68%), fewer former smokers in the LDCT group compared with controls (31% vs. 10%)</td>
<td>Not comparable</td>
<td>Yes</td>
<td>Unclear</td>
<td>NR</td>
<td>No</td>
<td></td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Italian Association for Cancer Research; Italian Ministry of Health, the Lombardy Region; and the Cariplo Foundation</td>
<td>Good</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td>PLCO</td>
<td>Yes</td>
<td>Unclear</td>
<td>Yes</td>
<td>Unclear</td>
<td>Yes</td>
<td>Yes</td>
<td>Mortality outcome: Yes</td>
<td>No</td>
<td>Incidence outcome: Unclear</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>NCI</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Mayo</td>
<td>Yes</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td></td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>NCI and Mayo Clinic</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
</tr>
</tbody>
</table>

Abbreviations: DANTE = Detection and Screening of Early Lung Cancer by Novel Imaging Technology and Molecular Essays; DLCST = Danish Lung Cancer Screening Trial; LDCT = low-dose computed tomography; LSS = Lung Screening Study; MILD = Multi-centric Italian Lung Detection; NCI = National Cancer Institute; NIH = National Institutes of Health; NLST = National Lung Screening Trial; PLCO = Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial
Appendix B3. Evidence Table of Included Cohort Studies

<table>
<thead>
<tr>
<th>Author, year, title</th>
<th>Population</th>
<th>Risk Group</th>
<th>Screening intervention</th>
<th>Imaging evaluation strategy</th>
<th>Suspicious abnormality finding evaluation strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuing Observation of Smoking Subjects (COSMOS)</td>
<td>Median pack-years: 44 Mean age: 57.7 years 64% men 80% current smokers</td>
<td>Smoking history ≥20 pack-years, if former smoker quit <10 years ago</td>
<td>LDCT High speed multirow detector or 16 slice</td>
<td>Within the study</td>
<td>Within the study: Nodules ≥5 mm repeat CT 1 year Nodules ≥5 to 8 mm repeat CT 3 to 6 months Nodules ≥8 mm or growing CT-PET Nodules growing or CT-PET positive biopsy</td>
</tr>
<tr>
<td>Veronesi et al, 2008<sup>a</sup></td>
<td>Median pack-years: 44 Mean age: 57.7 years 64% men 80% current smokers</td>
<td>Smoking history ≥20 pack-years, if former smoker quit <10 years ago</td>
<td>LDCT High speed multirow detector or 16 slice</td>
<td>Within the study</td>
<td>Within the study: Nodules ≥5 mm repeat CT 1 year Nodules ≥5 to 8 mm repeat CT 3 to 6 months Nodules ≥8 mm or growing CT-PET Nodules growing or CT-PET positive biopsy</td>
</tr>
<tr>
<td>Japan Studies</td>
<td>NR</td>
<td>Cohort includes anyone with ≥1 LDCT</td>
<td>LDCT vs. CXR</td>
<td>Individuals with positive studies asked to followup at Osaka Medical Center</td>
<td>Participants with positive studies asked to undergo further evaluation at Osaka Medical Center and all patients with positive CXR were asked to undergo CT</td>
</tr>
<tr>
<td>Toyoda et al, 2008<sup>a</sup></td>
<td>Mean age: 51 years 39% female</td>
<td>High-risk men (70% ever smokers) and medium-risk women (11% ever smokers)</td>
<td>LDCT multislice</td>
<td>Within study</td>
<td>Within study</td>
</tr>
<tr>
<td>Tsushima et al, 2008<sup>a</sup></td>
<td>Mean age: 51 years 39% female</td>
<td>High-risk men (70% ever smokers) and medium-risk women (11% ever smokers)</td>
<td>LDCT multislice</td>
<td>Within study</td>
<td>Within study</td>
</tr>
<tr>
<td>International Early Lung Cancer Action Program (I-ELCAP)</td>
<td>ELCAP 1: 46% women ELCAP 2: Median age: 59 years 52% women Median pack-years: 32</td>
<td>ELCAP 1 ≥10 pack-years high-risk ELCAP 2 ≥1 pack-year</td>
<td>CXR in ELCAP 1</td>
<td>Most in screening center</td>
<td>Most in screening center</td>
</tr>
<tr>
<td>Henschke et al, 2004<sup>a</sup></td>
<td>ELCAP 1: 46% women ELCAP 2: Median age: 59 years 52% women Median pack-years: 32</td>
<td>ELCAP 1 ≥10 pack-years high-risk ELCAP 2 ≥1 pack-year</td>
<td>CXR in ELCAP 1</td>
<td>Most in screening center</td>
<td>Most in screening center</td>
</tr>
<tr>
<td>Henschke et al, 2006<sup>b</sup></td>
<td>Asymptomatic current or former smokers, not otherwise described</td>
<td>Baseline and repeat LDCT</td>
<td>Protocol specified a diagnostic approach Indications for biopsy: Tumor growth Positive PET Nodules ≥15 mm Antibiotics 1 month out No response to CT</td>
<td>ELCAP protocol: specified a common regimen of screening. The definition of positive and the diagnostic evaluation differed for the baseline and annual screening. Evaluations conducted in each study center and recommendations for diagnostic workup were made to the participant and the referring physician.</td>
<td></td>
</tr>
</tbody>
</table>
Appendix B3. Evidence Table of Included Cohort Studies

<table>
<thead>
<tr>
<th>Author, year, title</th>
<th>Population</th>
<th>Risk Group</th>
<th>Screening intervention</th>
<th>Imaging evaluation strategy</th>
<th>Suspicious abnormality finding evaluation strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Henschke et al., 2006[^167] I-ELCAP Investigators Survival of patients with stage I lung cancer detected on CT screening</td>
<td>Median age: 61 years Median pack-years: 30</td>
<td>History of smoking or occupational exposure with increased risk or secondhand smoke</td>
<td>Baseline plus annual LDCT</td>
<td>Recommendations made to community physicians</td>
<td>For baseline screen: a positive result defined as identifying ≥1 solid or partially solid nodule ≥5 mm; ≥1 nonsolid NCN ≥8 mm or solid endobronchial nodule For annual screens: positive result was any new NCN</td>
</tr>
<tr>
<td>Shemesh et al., 2006[^168] Frequency of coronary artery calcification on low-dose computed tomography screening for lung cancer</td>
<td>ELCAP population, otherwise not described</td>
<td>High risk smokers</td>
<td>CXR</td>
<td>Most in screening center</td>
<td>Most in screening center</td>
</tr>
<tr>
<td>Menezes et al., 2010[^169] Lung cancer screening using low-dose computed tomography in at-risk individuals: the Toronto experience</td>
<td>Median age: 60 years (range: 50 to 83) Median pack-years: 30 54% female</td>
<td>High-risk smokers with ≥10 pack-years smoking history</td>
<td>CT Variable row detector configuration (4 to 64)</td>
<td>Recommendations within protocol to community providers</td>
<td>Positive: NCN ≥5 mm or 1 nonsolid nodule ≥8 mm Nodules or nodules <5 mm considered of unlikely clinical significance Biopsy recommended for nodules >15 mm immediately or after 1 month of antibiotics</td>
</tr>
<tr>
<td>Liu et al., 2011[^171] The outcome differences of CT screening for lung cancer pre and post following an algorithm in Zhuhai, China</td>
<td>46% ages 50–54 years 28% ages 60–69 years 2622 men; 1430 women 62% current smokers</td>
<td>Current or former (quit <10 years ago) smokers with ≥25 years smoking of ≥15 cigarettes/day or ≥30 years smoking of ≥10 cigarettes/day</td>
<td>LDCT (multidetector, 4 annual) vs. no screening</td>
<td>Nodules <5 mm evaluate annually Nodules 5–7 mm evaluate every 6 months Nodules 8–10 mm evaluate every 3 months Immediate recall for >10 mm nodules</td>
<td>Contact physician of choice</td>
</tr>
<tr>
<td>Lung Cancer Screening Intervention trial (LUSI)</td>
<td>Current or former (quit <10 years ago) smokers with ≥25 years smoking of 25 years smoking of ≥25 years smoking of ≥15 cigarettes/day or ≥30 years smoking ≥10 cigarettes/day</td>
<td>Current or former (quit <10 years ago) smokers with ≥20 pack-years</td>
<td>CT (4-detector row helical CT, at low-dose)</td>
<td>Mayo Clinic</td>
<td>Mayo Clinic</td>
</tr>
</tbody>
</table>

[^167]: Median age: 61 years Median pack-years: 30
[^168]: ELCAP population, otherwise not described
[^169]: Median age: 60 years (range: 50 to 83) Median pack-years: 30 54% female
[^170]: Zhuhai city 1994 to 2002: 70% nonsmokers 2003 to 2009: 71% nonsmokers
[^171]: 46% ages 50–54 years 28% ages 60–69 years 2622 men; 1430 women 62% current smokers
[^172]: Mayo Clinic
[^173]: Mayo Clinic
Appendix B3. Evidence Table of Included Cohort Studies

<table>
<thead>
<tr>
<th>Author, year, title</th>
<th>Population</th>
<th>Risk Group</th>
<th>Screening intervention</th>
<th>Imaging evaluation strategy</th>
<th>Suspicious abnormality finding evaluation strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marcus et al, 2006
Extended lung cancer incidence follow-up in the Mayo Lung Project and over-diagnosis</td>
<td>NR</td>
<td>High risk</td>
<td>CXR with sputum cytology either every 4 months vs. usual care</td>
<td>SCT at Mayo Clinic</td>
<td>Mayo Clinic</td>
</tr>
<tr>
<td>Sincirope et al, 2010
Perceptions of lung cancer risk and beliefs in screening accuracy of spiral computed tomography among high-risk lung cancer family members</td>
<td>NR</td>
<td>1st-degree relative with lung cancer and ≥3 blood relatives with lung cancer</td>
<td>SCT</td>
<td>SCT at Mayo Clinic</td>
<td>Mayo Clinic</td>
</tr>
<tr>
<td>Pittsburgh Lung Screening Study (PLuSS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wilson et al, 2008
The Pittsburgh Lung Screening Study</td>
<td>Mean age: 59 years 51% men, 49% women Mean pack-years: 47 60% current smokers</td>
<td>Current or former (quit <10 years ago) smokers with ≥half a pack/day history for 25 years</td>
<td>CT</td>
<td>Screening study results reported to patient and personal physician described as low, moderate, or high risk of being malignant. Study physicians an option. Only imaging within study is initial and 1 year LDCT.</td>
<td>Followup evaluation in the community</td>
</tr>
<tr>
<td>Byrne et al, 2008
Anxiety, fear of cancer, and perceived risk of cancer following lung cancer screening</td>
<td>Mean age: 59 years 51% men, 49% women Mean pack-years: 47 60% current smokers</td>
<td>Current or former (quit <10 years ago) smokers with ≥half a pack/day history for 25 years</td>
<td>CT</td>
<td>Screening study results reported to patient and personal physician described as low, moderate, or high risk of being malignant. Study physicians an option. Only imaging within study is initial and 1 year LDCT.</td>
<td>Followup evaluation in the community</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author, year, title</th>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
<th>Number of subjects</th>
<th>Country and setting</th>
<th>Sponsor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuing Observation of Smoking Subjects (COSMOS)</td>
<td>Asymptomatic men and women ages >50 years with a ≥20 pack-year history; current or prior smokers who quit <10 years ago</td>
<td>Prior malignant disease (except nonmelanoma skin cancer)</td>
<td>Number approached: NR Number eligible: NR Number enrolled: 5200</td>
<td>Italy</td>
<td>NR</td>
</tr>
</tbody>
</table>
Appendix B3. Evidence Table of Included Cohort Studies

<table>
<thead>
<tr>
<th>Author, year, title</th>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
<th>Number of subjects</th>
<th>Country and setting</th>
<th>Sponsor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Veronesi et al. 2008<sup>83</sup></td>
<td>Asymptomatic men and women ages >50 years with a ≥20 pack-year history; current or prior smokers who quit <10 years ago</td>
<td>Prior malignant disease (except nonmelanoma skin cancer)</td>
<td>Number approached: NR Number eligible: NR Number enrolled: 5200</td>
<td>Italy</td>
<td>NR</td>
</tr>
<tr>
<td>Japan Studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toyoda et al. 2008<sup>83</sup></td>
<td>All residents from Osaka between 1998 and 2000, smokers recommended to undergo LDCT and sputum cytology</td>
<td>Past or suspected lung cancer</td>
<td>Number approached: NR Number eligible: NR Number enrolled: 18,070 (4689 vs. 13,381)</td>
<td>Japan</td>
<td>Ministry of Health, Labor, and Welfare Japan</td>
</tr>
<tr>
<td>Tsushima et al. 2008<sup>90</sup></td>
<td>All population, NR</td>
<td>NR</td>
<td>Number approached: NR Number eligible: NR Number enrolled: 2486</td>
<td>Japan</td>
<td>NR</td>
</tr>
<tr>
<td>International Early Lung Cancer Action Program (I-ELCAP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Henschke et al. 2004<sup>88</sup></td>
<td>ELCAP 1 Ages ≥60 years with a smoking history of ≥10 pack-years ELCAP 2 Ages ≥40 years with a smoking history of ≥1 pack-years</td>
<td>CT scan <3 years prior</td>
<td>Number approached: NR Number eligible: NR Number analyzed: 1000 (ELCAP 1) and 1968 (ELCAP 2)</td>
<td>United States</td>
<td>NCI</td>
</tr>
<tr>
<td>Henschke et al. 2006<sup>87</sup></td>
<td>Asymptomatic past or current smokers ages ≥40 years fit for surgery</td>
<td>History of cancer</td>
<td>Number approached: NR Number eligible: NR Number enrolled: 14,435 (6296 women vs. 8139 men)</td>
<td>International study involving many countries, including the United States</td>
<td>NIH, many supporting institutions</td>
</tr>
<tr>
<td>Henschke et al., 2006<sup>87</sup></td>
<td>Asymptomatic adults ages >40 years with a history of smoking or occupational exposure with increased risk or secondhand smoke</td>
<td>NR</td>
<td>Number approached: NR Number eligible: NR Number enrolled: 31,567</td>
<td>International: Europe, United States, Japan, China, Israel</td>
<td>NIH, DOE, New York City</td>
</tr>
<tr>
<td>Shemesh et al. 2006<sup>88</sup></td>
<td>ELCAP 1 Ages ≥60 years with a smoking history of ≥10 pack-years ELCAP 2 Ages ≥40 years with a smoking</td>
<td>CT scan <3 years prior</td>
<td>Number approached: NR Number eligible: NR Number enrolled: 4250</td>
<td>United States</td>
<td>NCI</td>
</tr>
</tbody>
</table>

Screening for Lung Cancer 230 Pacific Northwest EPC
Appendix B3. Evidence Table of Included Cohort Studies

<table>
<thead>
<tr>
<th>Author, year, title</th>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
<th>Number of subjects</th>
<th>Country and setting</th>
<th>Sponsor</th>
</tr>
</thead>
</table>
| Menezes et al, 2010⁹⁶ | History of ≥1 pack-year | Prior cancer (except nonmelanoma skin cancer) and poor health | Number approached: NR
Number eligible: NR
Number enrolled: 3352 | Canada | Princess Margaret Foundation |
| Wagnetz et al, 2012⁹⁴ | Asymptomatic, ages ≥50 years, and ≥10 pack-year smoking history | | | | |
| Liu et al, 2011⁹⁵ | Government workers age ≥40 years | | | Zhuhai City, China | NR |
| **Lung Cancer Screening Intervention trial (LUSI)** | | | | | |
| Becker et al, 2012⁹⁸ | Current or former (quit <10 years ago) male and female smokers with ≥25 years smoking of ≥15 cigarettes/day or ≥30 years smoking of ≥10 cigarettes/day, ages 50 to 69 years | Cancer diagnosis within the past 5 years, medical circumstances preventing surgical treatment in case of a lung cancer diagnosis in screening, serious illness shortening life expectancy below 10 years | Number approached: 292,440
Number eligible: 4913
Number enrolled: 4052
Number analyzed: 2029 | Germany | German Research Foundation and Dietmar-Hopp-Stiftung, members of the German Center for Lung Research by the German Research Ministry |
| **Mayo Clinic** | | | | | |
| Swensen et al, 2005⁸⁷ | Current or former (quit <10 years ago) smokers with ≥20 pack-years history, age >50 years | On supplemental O₂, history of cancer within 5 years, mentally incompetent, unable to undergo lung resection surgery, and <5-year life expectancy | Number approached: NR
Number eligible: NR
Number enrolled: 1520 | United States, single site at Mayo Clinic | NCI and Mayo Clinic |
| Marcus et al, 2006⁵⁸ | Male smokers who had tested negative for lung cancer with CXR and/or sputum cytology at baseline judged to have life expectancy of ≥5 years and sufficient respiratory reserve to undergo lobectomy if needed | Tested positive for lung cancer on CXR | Number approached: NR
Number eligible: NR
Number enrolled: 9121 (4618 vs. 4503) | Mayo Clinic | NCI |
Evidence Table of Included Cohort Studies

<table>
<thead>
<tr>
<th>Author, year, title</th>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
<th>Number of subjects</th>
<th>Country and setting</th>
<th>Sponsor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sincirope et al., 2010*<sup>10</sup> Perceptions of lung cancer risk and beliefs in screening accuracy of spiral computed tomography among high-risk lung cancer family members</td>
<td>Ages >30 years, 1<sup>st</sup>-degree relative with lung cancer and ≥3 blood relatives with lung cancer and current medical insurance</td>
<td>Personal history of lung cancer</td>
<td>Number approached: NR Number eligible: 371 Number enrolled: 60</td>
<td>United States, single site at Mayo Clinic</td>
<td>NCI</td>
</tr>
<tr>
<td>Wilson et al., 2008<sup>7</sup> The Pittsburgh Lung Screening Study</td>
<td>Current or former (quit <10 years ago) smoker with ≥half a pack/day history for 25 years, and symptoms were allowed</td>
<td>Prior history of lung cancer, chest CT within past year, weight >400 lbs, and other lung cancer screening</td>
<td>Number approached: 9386 Number eligible: 5034 Number enrolled: 3642</td>
<td>United States, single site in Pittsburgh</td>
<td>University of Pittsburgh Cancer Institute via NCI</td>
</tr>
<tr>
<td>Byrne et al., 2008<sup>8</sup> Anxiety, fear of cancer, and perceived risk of cancer following lung cancer screening</td>
<td>Current or former (quit <10 years ago) smoker with ≥half a pack/day history for 25 years, and symptoms were allowed</td>
<td>Prior history of lung cancer, chest CT within past year, weight >400 lbs, and other lung cancer screening</td>
<td>Number approached: 9386 Number eligible: 5034 Number enrolled: 3642 Number analyzed: 341</td>
<td>United States, single site in Pittsburgh</td>
<td>University of Pittsburgh Cancer Institute via NCI</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author, year, title</th>
<th>Results</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Veronesi et al., 2008*<sup>9</sup> Difficulties encountered managing nodules detected during a computed tomography lung cancer screening program</td>
<td>43% NCN 106 invasive procedures: 15 for benign disease 91 lung cancers, of which 71% stage I (89 screen-detected) 79/91 curative surgery 24-month survival (85%) Interval cancer: NR</td>
<td>91%</td>
<td>100%</td>
</tr>
<tr>
<td>Veronesi et al., 2008<sup>10</sup> Lung cancer screening with low-dose computed tomography: a non-invasive diagnostic protocol for baseline lung nodules</td>
<td>2198 at baseline had ≥1 NCN ≤5 mm 354 (6.8%) had ≥1 NCN 5.1 to 8 mm 206 had nodules >8 mm 504/5201 had ≥1 indeterminate nodule recalled for ≥1 additional evaluations 55 cancers diagnosed at baseline 36 cancers diagnosed at year 1 1 interval cancer after 1st incidence screening Among 36 cancers diagnosed at 2nd screen, 24 had prevalent nodule 1st year prior, 12 had new malignancy Baseline cancers: 79 Incidence: 13 Stage I: 66%</td>
<td>91% 1 interval cancer after incidence screen 36 cancers detected on incidence screen, of which 24 on baseline</td>
<td>100%</td>
</tr>
</tbody>
</table>
Appendix B3. Evidence Table of Included Cohort Studies

<table>
<thead>
<tr>
<th>Author, year, title</th>
<th>Results</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japan Studies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toyoda et al., 2008</td>
<td>40 cancers</td>
<td>Overall: 89%</td>
<td>LDCT: 93%</td>
</tr>
<tr>
<td>Sensitivity and</td>
<td>5 interval cancer LDCT</td>
<td>Smokers: 84%</td>
<td>CXR: 97%</td>
</tr>
<tr>
<td>specificity of lung</td>
<td></td>
<td>Non-smokers: 100%</td>
<td>LDCT baseline: 91%</td>
</tr>
<tr>
<td>cancer screening</td>
<td></td>
<td>Adenocarcinoma LDCT: 100%</td>
<td>LDCT annual: 96%</td>
</tr>
<tr>
<td>using chest low-dose</td>
<td></td>
<td>Nonadenocarcinoma: 62%</td>
<td>Men LDCT: 92%</td>
</tr>
<tr>
<td>computed tomography</td>
<td></td>
<td>Women: 85%</td>
<td>Women: 94%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Men: 91%</td>
<td>Smokers: 92%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nonsmokers: 94%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tsushima et al., 2008</td>
<td>2486 scans</td>
<td>100%</td>
<td>97%</td>
</tr>
<tr>
<td>Radiological</td>
<td>Negative: 2132</td>
<td>PPV LDCT: 9.9%</td>
<td></td>
</tr>
<tr>
<td>diagnosis of small</td>
<td>Seminegative: 140/354 (14%) patients with nodules</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pulmonary nodules</td>
<td>Semipositive: 111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>detected on low-dose</td>
<td>Positive: 103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>screening computed</td>
<td>HRCT: 1837 cancers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tomography</td>
<td>3/7 cancers in nonsmoking women</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>International Early Lung Cancer Action Program (I-ELCAP)</td>
<td></td>
<td>Baseline: 77/79 (97%)*</td>
<td>Baseline: 2889/3178</td>
</tr>
<tr>
<td>Henschke et al., 2004</td>
<td>Baseline (positive result: ≥1 solid/part solid nodule ≥5 mm NCN):</td>
<td>Annual: 28/29 (97%)*</td>
<td>(91%</td>
</tr>
<tr>
<td>CT screening for lung</td>
<td>368 nodules</td>
<td></td>
<td>11 screen</td>
</tr>
<tr>
<td>cancer: assessing a</td>
<td>79 lung cancer</td>
<td>254 abnormal</td>
<td></td>
</tr>
<tr>
<td>regimen’s diagnostic</td>
<td>2 interval</td>
<td>29 false-positive: 225</td>
<td></td>
</tr>
<tr>
<td>performance</td>
<td>77 screen-detected</td>
<td>TN: 286/3085</td>
<td></td>
</tr>
<tr>
<td></td>
<td>75 stage I</td>
<td>29 lung cancer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>65 adenocarcinoma</td>
<td>1 interval</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Repeat screen (any new or growing nodule; interval cancer = lung cancer diagnosis within 1 year of prior CT): N=4538</td>
<td>27 stage I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>254 nodules (6%)</td>
<td>17 adenocarcinoma</td>
<td></td>
</tr>
<tr>
<td></td>
<td>29 lung cancer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 interval</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27 stage I</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17 adenocarcinoma</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lung cancer: 156</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>Stage I: 139</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resection: 125</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lung cancer deaths: NR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carcinoid: 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adenocarcinoma: 114</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Squamous: 22</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Large cell: 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Small cell: 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other NSCLC, not specified: 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix B3. Evidence Table of Included Cohort Studies

<table>
<thead>
<tr>
<th>Author, year, title</th>
<th>Results</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
</table>
| **Henschke et al., 2006**¹⁶⁷
I-ELCAP Investigators
Survival of patients with stage I lung cancer detected on CT screening | Baseline (n=31,567)
4186 with concerning nodule (13%)
405 lung cancer (prevalence 1.3%)
5 interval cancers among 27,381 without nodule
Annual (n=484 diagnosed cancers)
1460 new nodules (5%)
74 lung cancer (prevalence 0.3%)
Interval cancers (n=484 diagnosed cancers)
411 resected, 57 radiation therapy, chemoprevention or both
16 no treatment
Operative mortality: 0.5% (2/411)
412 stage I
39 died
75/484 with lung cancer died, including 2 who died ≤4 weeks before surgery | Baseline: 4186/4191 (99%)
Annual: 100% | NR |
| **Shemesh et al., 2006**¹⁶⁸
Frequency of coronary artery calcification on low-dose computed tomography screening for lung cancer | CAC score 2: 1544 (36%)
Positive CAC: 2706 (64%)
Frequency of positive CAC: 66% in former vs. 62% in current smokers
CAC increased with age and was higher in men | NA | NA |
| **Menezes et al., 2010**⁹⁶
Lung cancer screening using low-dose computed tomography in at-risk individuals: the Toronto experience
Wagnetz et al., 2012⁹⁴
Screening for lung cancer: implication of lung biopsy recommendations | Nodules:
Positive: 600/3352 (18%)
CT with contrast: 12
1-month followup: 44
3-month followup: 521
6-month followup: 3
Biopsy (within 6 months): 57
Lung cancer: 44 (13% previous)
≥1 repeat CT: 2686 (range: 1 to 5)
65 total cancers
3 interval (false-negative)
48/65 women
56/65 prevalent
6/65 incident
3/65 interval
Stage
Stage I: 42/65
Stage II: 4
Stage III/IV: 10
Pathology
Adenocarcinoma: 44
Squamous: 9
Small cell: 4
Unknown: 1
Carcinoid: 1 | 1 year: 88%
For NSCLC: 89% | 99% |
Appendix B3. Evidence Table of Included Cohort Studies

<table>
<thead>
<tr>
<th>Author, year, title</th>
<th>Results</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung Cancer Screening Intervention trial (LUSI)
Becker et al, 2012<sup>48</sup>
Randomized study on early detection of lung cancer with MSCT in Germany: study design and results of the first screening round</td>
<td>2029 initial screens
1488 (73%) negative
540 (27%) suspicious
-31% solitary
-35% 2–4 nodules
-27% 5–9 nodules
-7% >10 nodules
393 (19%) 5–7 mm nodules
-72 “cleared” and back to normal
78 (5%) 8–10 mm nodules
-7 “cleared” and back to normal
69 (5%) >10 mm nodules
-11 “cleared” and back to normal
22 lung cancers diagnosed in first round
-4 in 5–7 mm nodules
-1 in 8–10 mm nodules
-17 in >10 mm nodules
1 interval cancer from round 1 to 2, stage IV adenocarcinoma</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Mayo Clinic
Swensen et al, 2005<sup>47</sup>
CT Screening for lung cancer: five-year prospective experience</td>
<td>2038 nodules <4 mm; 1034 (4 to 7 mm); 268 (8 to 20 mm); 16 (>20 mm)
Subjects with prevalence nodules: 780
False-positive rate: 92% to 96%; 69% with ≥1
Prevalent lung cancer stage: N=31; IA: 20, IB: 2, IIA: 4, IIB: 2, IV: 1, SCLC: 2
Incident/interval lung cancer stage: N=35; IA: 16, IB: 1, IIA: 2, IIB: 2, IIIA: 4, IIIB: 2, IV: 0, unknown: 2, SCLC: 6
Mortality: overall: 48; lung cancer: 9 (of 5481.5 py)
Volume doubling time: of 48 cancers with info, mean VDT: 518 days (SD, 1094); 13 tumors with VDT more than 400 days (11/13 in women)</td>
<td>3 interval cancers 63/66: 95%</td>
<td>NR</td>
</tr>
<tr>
<td>Marcus et al, 2006<sup>46</sup>
Extended lung cancer Incidence follow-up in the Mayo Lung Project and over-diagnosis</td>
<td>At the end of the study (1983) 206 lung cancers diagnosed in intervention, after followup (1999) 379 more lung cancers diagnosed in intervention group</td>
<td>NR</td>
<td>NA</td>
</tr>
</tbody>
</table>
Appendix B3. Evidence Table of Included Cohort Studies

<table>
<thead>
<tr>
<th>Author, year, title</th>
<th>Results</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sincirope et al, 2010†</td>
<td>Baseline vs. 1 month negative vs. 1 month nonnegative vs. 6 month negative vs. 6 month nonnegative Cancer thoughts (some): 65% vs. 54% vs. 87% vs. 59% vs. 69% Mood affected by results (some): 34% vs. 29% vs. 27% vs. 21% vs. 31% Daily activity affected (some): 8% vs. 3% vs. 0% vs. 6% vs. 6% Cancer concern (concern): 94% vs. 89% vs. 100% vs. 91% vs. 94% Perceived comparative cancer risk (higher): 76% vs. 74% vs. 69% vs. 57% vs. 81% Perceived absolute cancer risk (likely): 64% vs. 63% vs. 75% vs. 66% vs. 75%</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Pittsburgh Lung Screening Study (PLuSS)</td>
<td>80 cases of lung cancer (2.2% cumulative incidence [95% CI, 1.7 to 2.2]) 11 small cell (45% limited stage) 69 NSCLC Stage I: 58% Stage II: 17% Stage III: 30% Stage IV: 7% Initial LDCT: 1477 (41%) with abnormality and referred for further evaluation (40 [1.1%] high, 182 [5%] moderate, 1255 [85%] low); 1070 imaging studies in 821 subjects in year after initial LDCT; 82 subjects with significant incidental finding</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Byrne et al, 2008†</td>
<td>Negative vs. indeterminate vs. suspicious State anxiety Initial: 35.9 vs. 34.4 vs. 32.6 Post: 35.9 vs. 37.7 vs. 38.3 6 months: 34.4 vs. 37.3 vs. 32.6 12 months: 35.1 vs. 35.3 vs. 35.1 Trait anxiety Initial: 37.0 vs. 36.7 vs. 33.9 Post: 36.6 vs. 37.5 vs. 36.6 6 months: 35.7 vs. 36.7 vs. 35.4 12 months: 35.8 vs. 36.3 vs. 35.0 Cancer fear Initial: 7.0 vs. 7.2 vs. 6.4 Post: 7.0 vs. 7.5 vs. 8.5 6 months: 6.5 vs. 7.1 vs. 7.4 12 months: 6.7 vs. 7.1 vs. 7.1 Perceived risk (%) Objective: <1 vs. 1 to 5 vs. 15 to 20 Initial: 17 vs. 19 vs. 19 Post: 11 vs. 20 vs. 35 6 months: 13 vs. 15 vs. 30 12 months: 13 vs. 19 vs. 31</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

*Calculated.
Appendix B3. Evidence Table of Included Cohort Studies

<table>
<thead>
<tr>
<th>Study Name(s)</th>
<th>Abbreviations</th>
<th>Description</th>
<th>Participants</th>
<th>Setting</th>
<th>Length of Follow-up</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pacific Northwest EPC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CAC = coronary artery calcification; CI = confidence interval; COSMOS = Continuing Observation of Smoking Subjects; CT = computed tomography; CXR = chest x-ray; DOE = Department of Education; ELCAP = Early Lung Cancer Action Program; HRCT = high-resolution computed tomography; I-ELCAP = International Early Lung Cancer Action Program; FNA = fine needle aspiration; LDCT = low-dose computed tomography; LUSI = Lung Cancer Screening Intervention; MDCT = multidetector row computed tomography; NA = not applicable; NCI = National Cancer Institute; NCN = noncalcified nodule; NIH = National Institutes of Health; NR = not reported; NSCLC = non-small cell lung cancer; py = person years; PET = positron emission tomography; PLuSS = Pittsburgh Lung Screening Study; PPV = positive predictive value; SCLC = small cell lung cancer; SCT = spiral computed tomography; SD = standard deviation; TN = true negative; VATS = video-assisted thoracic surgery; VDT = volume doubling time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>